Files
c_pompes/main.cpp

863 lines
21 KiB
C++
Raw Normal View History

2025-11-30 09:48:43 +01:00
#include <unistd.h>
#include <ncurses.h>
#include <math.h>
#include <locale.h>
#include <array>
2025-12-03 23:27:56 +01:00
#include "main.hpp"
2025-11-30 09:48:43 +01:00
#include "AutomForArduino.cpp"
2025-12-07 15:51:07 +01:00
#include <prometheus/counter.h>
#include <prometheus/gauge.h>
#include <prometheus/histogram.h>
#include <prometheus/registry.h>
#include <prometheus/exposer.h>
2025-11-30 09:48:43 +01:00
// Constantes de fonctionnement
#define LEVEL_MIN 2
#define FLOW_PER_PUMP 150
WINDOW *window;
int etape = 10; // Étape du grafcet : début Automatique
int bp_mode, bp_mode_fm;
unsigned short pompe1, pompe2, pompe3, pompe4; // bouton des pompes 0 (arrêt) / 1 (marche)
unsigned short pompe1_old, pompe2_old, pompe3_old, pompe4_old;
unsigned short sensor_max, sensor_high, sensor_low, sensor_min;
float TankInitalValue = 7;
2025-12-07 15:51:07 +01:00
TemporisationRetardMontee tempo1(1500);
TemporisationRetardMontee tempo2(3000);
TemporisationRetardMontee tempo3(4000);
TemporisationRetardMontee tempo4(6000);
2025-11-30 09:48:43 +01:00
// Prometheus
// ************************************************************
2025-12-07 15:51:07 +01:00
using namespace prometheus;
std::shared_ptr<Registry> registry;
Gauge *debit_entree = nullptr;
Gauge *debit_sortie = nullptr;
Gauge *debit_p1 = nullptr;
Gauge *debit_p2 = nullptr;
Gauge *debit_p3 = nullptr;
Gauge *debit_p4 = nullptr;
Gauge *tank_gauge = nullptr;
Counter *volume_p1 = nullptr;
Counter *volume_p2 = nullptr;
Counter *volume_p3 = nullptr;
Counter *volume_p4 = nullptr;
2025-11-30 09:48:43 +01:00
2025-12-07 15:51:07 +01:00
Histogram::BucketBoundaries buckets = {
2, 5, 6, 7, 8, 9, 9.5
};
Histogram *tank_histogram = nullptr;
2025-11-30 09:48:43 +01:00
// ************************************************************
2025-12-03 23:27:56 +01:00
int main()
2025-12-03 23:20:46 +01:00
{
2025-11-30 09:48:43 +01:00
/* Initialisation */
ConsoleInit();
AffichageWindow();
InitPrometheus();
ProcessInitKeyboard();
ProcessInitIO();
ProcessInitValues();
while (1)
{
int ch = getch(); // Lit l'entrée du clavier sans bloquer
// **** Break loop if escape key (27) is pressed
2025-12-03 23:20:46 +01:00
if (ch == 27 || _digital[OUT_END].ivalue) {
2025-11-30 09:48:43 +01:00
break;
}
2025-12-03 23:20:46 +01:00
2025-11-30 09:48:43 +01:00
// **** Beep
if (_digital[OUT_BEEP].ivalue)
{
beep();
_digital[OUT_BEEP].ivalue = false;
}
Process();
LireClavier(ch);
LireEntree();
EvolutionGrafcet();
Actions();
ProcessPrometheus();
2025-12-03 23:20:46 +01:00
2025-11-30 09:48:43 +01:00
ProcessException();
usleep(100000);
}
endwin(); // Termine ncurses et rétablit le terminal
puts("Fin du programme");
2025-12-03 23:20:46 +01:00
2025-11-30 09:48:43 +01:00
return 0;
}
/**
* Programme
*/
void LireEntree()
{
int input;
input = digitalRead(IN_KEYBOARD_A);
bp_mode_fm = (input > bp_mode);
bp_mode = input;
sensor_min = digitalRead(IN_SENSOR_MIN);
sensor_low = digitalRead(IN_SENSOR_LOW);
sensor_high = digitalRead(IN_SENSOR_HIGH);
sensor_max = digitalRead(IN_SENSOR_MAX);
}
void EvolutionGrafcet()
{
int etape_futur = etape;
if (etape < 10 && bp_mode_fm)
{
etape_futur = 10;
pompe1 = pompe2 = pompe3 = pompe4 = 0;
}
if (etape <= 2 && _digital[IN_KEYBOARD_1].raising)
{
pompe1 = !pompe1;
}
if (etape <= 2 && _digital[IN_KEYBOARD_2].raising)
{
pompe2 = !pompe2;
}
if (etape <= 2 && _digital[IN_KEYBOARD_3].raising)
{
pompe3 = !pompe3;
}
if (etape <= 2 && _digital[IN_KEYBOARD_4].raising)
{
pompe4 = !pompe4;
}
if (etape == 0 && !sensor_min)
{
etape_futur = 1;
}
if (etape == 1)
{
etape_futur = 2;
}
if (etape == 2 && sensor_min)
{
etape_futur = 0;
}
if (etape >= 10 && bp_mode_fm)
{
etape_futur = 0;
pompe1 = pompe2 = pompe3 = pompe4 = 0;
}
if (sensor_max)
{
pompe1 = pompe2 = pompe3 = pompe4 = 0;
}
/* Automatique */
if (etape == 10 && !sensor_low && !sensor_high)
{
etape_futur = 11;
}
if (etape == 11 && sensor_high)
{
etape_futur = 10;
}
if (etape == 11 && tempo1.getSortie())
{
etape_futur = 12;
}
if (etape == 12 && sensor_high)
{
etape_futur = 13;
}
if (etape == 12 && tempo2.getSortie())
{
etape_futur = 14; // Allumer le moteur 2
}
if (etape == 13 && tempo1.getSortie())
{
etape_futur = 10;
}
if (etape == 13 && !sensor_low && !sensor_high)
{
etape_futur = 12;
}
if (etape == 14 && sensor_high)
{
etape_futur = 15;
}
if (etape == 14 && tempo3.getSortie())
{
etape_futur = 16;
}
if (etape == 15 && tempo1.getSortie())
{
etape_futur = 13;
}
if (etape == 15 && !sensor_low && !sensor_high)
{
etape_futur = 14;
}
if (etape == 16 && sensor_high)
{
etape_futur = 17;
}
if (etape == 16 && tempo4.getSortie())
{
etape_futur = 18;
}
if (etape == 17 && tempo1.getSortie())
{
etape_futur = 15;
}
if (etape == 17 && !sensor_low && !sensor_high)
{
etape_futur = 16;
}
if (etape == 18 && sensor_high)
{
etape_futur = 19;
}
if (etape == 19 && tempo1.getSortie())
{
etape_futur = 17;
}
if (etape == 19 && !sensor_low && !sensor_high)
{
etape_futur = 18;
}
/* Fin de mode automatique */
if (etape != etape_futur)
{
etape = etape_futur;
}
}
void Actions()
{
digitalWrite(OUT_DISPLAY_GRAFCET, etape);
digitalWrite(OUT_DISPLAY_MODE, etape >= 10);
digitalWrite(OUT_PUMP_1, !sensor_max && (pompe1 == 1 || etape >= 12));
digitalWrite(OUT_PUMP_2, !sensor_max && (pompe2 == 1 || etape >= 14));
digitalWrite(OUT_PUMP_3, !sensor_max && (pompe3 == 1 || etape >= 16));
digitalWrite(OUT_PUMP_4, !sensor_max && (pompe4 == 1 || etape >= 18));
// digitalWrite(OUT_BEEP, etape == 1);
if (etape >= 11)
{
tempo1.activation();
tempo2.activation();
tempo3.activation();
tempo4.activation();
}
}
/**
* Process
*/
void ProcessInitKeyboard()
{
_keyboard[0].vKey = '1';
_keyboard[0].input = IN_KEYBOARD_1;
_keyboard[1].vKey = '2';
_keyboard[1].input = IN_KEYBOARD_2;
_keyboard[2].vKey = '3';
_keyboard[2].input = IN_KEYBOARD_3;
_keyboard[3].vKey = '4';
_keyboard[3].input = IN_KEYBOARD_4;
_keyboard[4].vKey = 'a';
_keyboard[4].input = IN_KEYBOARD_A;
_keyboard[5].vKey = 'x';
_keyboard[5].input = IN_KEYBOARD_X;
_keyboard[6].vKey = '6';
_keyboard[6].input = IN_KEYBOARD_7;
_keyboard[7].vKey = '7';
_keyboard[7].input = IN_KEYBOARD_8;
_keyboard[8].vKey = '8';
_keyboard[8].input = IN_KEYBOARD_9;
_keyboard[9].vKey = '9';
_keyboard[9].input = IN_KEYBOARD_0;
for (int i = 0; i < NB_KEYBOARD; i++)
{
_digital[_keyboard[i].input].mode = OP_DIGITAL_READ;
}
}
void ProcessInitIO()
{
pinMode(IN_KEYBOARD_1, IO_INPUT | DIGITAL);
pinMode(IN_KEYBOARD_2, IO_INPUT | DIGITAL);
pinMode(IN_KEYBOARD_3, IO_INPUT | DIGITAL);
pinMode(IN_KEYBOARD_4, IO_INPUT | DIGITAL);
pinMode(IN_KEYBOARD_A, IO_INPUT | DIGITAL);
pinMode(IN_KEYBOARD_7, IO_INPUT | DIGITAL);
pinMode(IN_KEYBOARD_8, IO_INPUT | DIGITAL);
pinMode(IN_KEYBOARD_9, IO_INPUT | DIGITAL);
pinMode(IN_KEYBOARD_0, IO_INPUT | DIGITAL);
pinMode(IN_KEYBOARD_X, IO_INPUT | DIGITAL);
pinMode(IN_SENSOR_MIN, IO_INPUT | DIGITAL);
pinMode(IN_SENSOR_LOW, IO_INPUT | DIGITAL);
pinMode(IN_SENSOR_HIGH, IO_INPUT | DIGITAL);
pinMode(IN_SENSOR_MAX, IO_INPUT | DIGITAL);
pinMode(IN_TANK_LEVEL, IO_INPUT | ANALOG);
pinMode(IN_FLOW_OUT, IO_INPUT | ANALOG);
pinMode(IN_FLOW_IN, IO_INPUT | ANALOG);
pinMode(IN_FLOW_DIF, IO_INPUT | ANALOG);
pinMode(IN_TANK_MIN, IO_INPUT | ANALOG);
pinMode(IN_TANK_MAX, IO_INPUT | ANALOG);
pinMode(IN_FLOW_CAP, IO_INPUT | ANALOG);
pinMode(IN_FLOW_1, IO_INPUT | ANALOG);
pinMode(IN_FLOW_2, IO_INPUT | ANALOG);
pinMode(IN_FLOW_3, IO_INPUT | ANALOG);
pinMode(IN_FLOW_4, IO_INPUT | ANALOG);
pinMode(OUT_PUMP_1, IO_OUTPUT | DIGITAL);
pinMode(OUT_PUMP_2, IO_OUTPUT | DIGITAL);
pinMode(OUT_PUMP_3, IO_OUTPUT | DIGITAL);
pinMode(OUT_PUMP_4, IO_OUTPUT | DIGITAL);
pinMode(OUT_DISPLAY_MODE, IO_OUTPUT | DIGITAL);
pinMode(OUT_DISPLAY_GRAFCET, IO_OUTPUT | DIGITAL);
pinMode(OUT_LEVEL_MIN, IO_OUTPUT | ANALOG);
pinMode(OUT_LEVEL_LOW, IO_OUTPUT | ANALOG);
pinMode(OUT_LEVEL_HIGH, IO_OUTPUT | ANALOG);
pinMode(OUT_LEVEL_MAX, IO_OUTPUT | ANALOG);
pinMode(OUT_FLOW_PER_PUMP, IO_OUTPUT | ANALOG);
pinMode(OUT_FLOW_OUT_AMPLITUDE, IO_OUTPUT | ANALOG);
pinMode(OUT_BEEP, IO_OUTPUT | DIGITAL);
_digital[OUT_PUMP_1].error = 30;
_digital[OUT_PUMP_1].efficacite = 1.0;
//_digital[OUT_PUMP_1].time = 4294967295; //UINT_MAX
_digital[OUT_PUMP_2].error = 30;
_digital[OUT_PUMP_2].efficacite = 0.72;
//_digital[OUT_PUMP_2].time = 4294967295;
_digital[OUT_PUMP_3].error = 10;
_digital[OUT_PUMP_3].efficacite = 1.0;
//_digital[OUT_PUMP_3].time = 4294967295;
_digital[OUT_PUMP_4].error = 30;
_digital[OUT_PUMP_4].efficacite = 1.0;
//_digital[OUT_PUMP_4].time = 4294967295;
}
void ProcessInitValues()
{
t_start = t_backup = millis();
srand(time(NULL));
_digital[IN_TANK_LEVEL].dvalue = _digital[IN_TANK_MAX].dvalue = _digital[IN_TANK_MIN].dvalue = TankInitalValue;
_digital[OUT_FLOW_PER_PUMP].dvalue = FLOW_PER_PUMP;
_digital[OUT_FLOW_OUT_AMPLITUDE].dvalue = 100.0;
_digital[OUT_LEVEL_MIN].dvalue = LEVEL_MIN;
_digital[OUT_LEVEL_LOW].dvalue = 6;
_digital[OUT_LEVEL_HIGH].dvalue = 7;
_digital[OUT_LEVEL_MAX].dvalue = 9.5;
_digital[IN_FLOW_OUT].dvalue = 100.0;
}
/**
* Fonctionnement des moteurs
*/
2025-12-03 23:20:46 +01:00
double ProcessMoteur(int i)
2025-11-30 09:48:43 +01:00
{
double vitesse = 1.0;
double t = _digital[i].time / 5000.0;
if (_digital[i].ivalue)
{
if (_digital[i].time < 2500)
{
vitesse = 4 * pow(t, 3.0);
}
else if (_digital[i].time < 5000)
{
vitesse = 1.0 - pow(2 - 2 * t, 3) / 2.0;
}
else
{
vitesse = 1.0 + 1.0 / (_digital[i].error * 2.0) - rand() / (double)RAND_MAX / _digital[i].error;
}
}
else
{
if (_digital[i].time < 2500)
{
vitesse = 1 - 4 * pow(t, 3.0);
}
else if (_digital[i].time < 5000)
{
vitesse = pow(2 - 2 * t, 3) / 2.0;
// vitesse = 1 - pow(t, 4.0);
}
else
{
vitesse = 0.0;
}
}
return _digital[OUT_FLOW_PER_PUMP].dvalue * _digital[i].efficacite * vitesse;
}
void ProcessException()
{
2025-12-07 15:51:07 +01:00
if (t_elapsed > 60) {
2025-11-30 09:48:43 +01:00
_digital[OUT_PUMP_1].mode = 0;
2025-12-07 15:51:07 +01:00
digitalWrite(OUT_PUMP_1, 0);
2025-11-30 09:48:43 +01:00
} else if (t_elapsed > 15) {
2025-12-07 15:51:07 +01:00
//_digital[IN_SENSOR_LOW].mode = 0;
2025-11-30 09:48:43 +01:00
}
}
void Process()
{
// *****
unsigned long t = millis();
t_elapsed = (t - t_start) / 1000.0;
dt = (t - t_backup) / 1000.0;
// ***** FLOW OUT
if (_digital[IN_TANK_LEVEL].dvalue > 1.0)
{
2025-12-07 15:51:07 +01:00
_digital[IN_FLOW_OUT].dvalue = SimulConsoSinusoidale(t);
//_digital[IN_FLOW_OUT].dvalue = SimulConsoBrown(_digital[IN_FLOW_OUT].dvalue);
2025-11-30 09:48:43 +01:00
}
else
{
if (_digital[IN_FLOW_CAP].dvalue == 0.0) {
_digital[IN_FLOW_CAP].dvalue = _digital[IN_FLOW_OUT].dvalue;
}
_digital[IN_FLOW_OUT].dvalue = _digital[IN_FLOW_CAP].dvalue * _digital[IN_TANK_LEVEL].dvalue;
}
// ***** FLOW IN
_digital[IN_FLOW_IN].dvalue = 0;
for (int i = OUT_PUMP_1; i <= OUT_PUMP_4; i++)
{
_digital[i - 4].dvalue = ProcessMoteur(i);
_digital[IN_FLOW_IN].dvalue += _digital[i - 4].dvalue;
}
_digital[IN_FLOW_DIF].dvalue = _digital[IN_FLOW_IN].dvalue - _digital[IN_FLOW_OUT].dvalue;
// ***** TANK LEVEL
_digital[IN_TANK_LEVEL].dvalue += (_digital[IN_FLOW_IN].dvalue - _digital[IN_FLOW_OUT].dvalue) / 1000.0 * dt;
if (_digital[IN_TANK_LEVEL].dvalue > 10.0) {
_digital[IN_TANK_LEVEL].dvalue = 10.0;
}
if (_digital[IN_TANK_LEVEL].dvalue > _digital[IN_TANK_MAX].dvalue) {
_digital[IN_TANK_MAX].dvalue = _digital[IN_TANK_LEVEL].dvalue;
}
if (_digital[IN_TANK_LEVEL].dvalue < _digital[IN_TANK_MIN].dvalue) {
_digital[IN_TANK_MIN].dvalue = _digital[IN_TANK_LEVEL].dvalue;
}
// **** KEYBOARD
if (_digital[IN_KEYBOARD_X].raising)
{
_digital[IN_SENSOR_LOW].mode = _digital[IN_SENSOR_LOW].mode ^ 0x01;
}
for (int i = IN_KEYBOARD_7; i <= IN_KEYBOARD_0; i++)
{
if (_digital[i].raising)
{
unsigned char p = i + (OUT_PUMP_1 - IN_KEYBOARD_7);
_digital[p].mode ^= 0x01;
if (!(_digital[p].mode & 0x01)) {
2025-12-07 15:51:07 +01:00
digitalWrite(p, 0);
2025-11-30 09:48:43 +01:00
}
}
}
// **** SENSOR
int test;
test = (_digital[IN_TANK_LEVEL].dvalue > _digital[OUT_LEVEL_MIN].dvalue);
if (_digital[IN_SENSOR_MIN].ivalue != test)
{
if (test == 0)
{
_digital[IN_SENSOR_MIN].nb += 1;
}
_digital[IN_SENSOR_MIN].ivalue = test;
}
test = _digital[IN_TANK_LEVEL].dvalue > _digital[OUT_LEVEL_LOW].dvalue && _digital[IN_SENSOR_LOW].mode & 0x01;
if (_digital[IN_SENSOR_LOW].ivalue != test)
{
if (test == 0)
{
_digital[IN_SENSOR_LOW].nb += 1;
}
_digital[IN_SENSOR_LOW].ivalue = test;
}
test = _digital[IN_TANK_LEVEL].dvalue > _digital[OUT_LEVEL_MAX].dvalue;
if (_digital[IN_SENSOR_MAX].ivalue != test)
{
if (test == 1)
{
_digital[IN_SENSOR_MAX].nb += 1;
}
_digital[IN_SENSOR_MAX].ivalue = test;
}
test = _digital[IN_TANK_LEVEL].dvalue > _digital[OUT_LEVEL_HIGH].dvalue;
if (_digital[IN_SENSOR_HIGH].ivalue != test)
{
if (test == 1)
{
_digital[IN_SENSOR_HIGH].nb += 1;
}
_digital[IN_SENSOR_HIGH].ivalue = test;
}
2025-12-03 23:27:56 +01:00
Affichage();
2025-11-30 09:48:43 +01:00
t_backup = t;
}
2025-12-03 23:20:46 +01:00
double SimulConsoSinusoidale(long t)
2025-11-30 09:48:43 +01:00
{
double alea = ((long)(t / 100.0) % 600) * 3 / 1800.0 * PI;
//mvprintw(18, 0, "%ld %f", (long)(t / 100.0), alea);
return 100 + cos(alea) * cos(alea) * _digital[OUT_FLOW_OUT_AMPLITUDE].dvalue;
}
2025-12-03 23:20:46 +01:00
// dt : Intervalle de temps
2025-11-30 09:48:43 +01:00
double SimulConsoBrown(double valeur_precedente)
{
float mu = 0.01 * -((((int)t_elapsed / 30) % 2) * 2 - 1); // Taux de croissance (1%)
float sigma = 0.05; // Volatilité (5%)
mvprintw(8, 40, "(µ %.1f %% ; σ %.1f %%) ", mu * 100, sigma * 100);
// Nombre aléatoire compris dans [-1 +1]
2025-12-03 23:20:46 +01:00
float rand_std_normal = ((double)rand() / RAND_MAX) * 2.0 - 1.0;
2025-11-30 09:48:43 +01:00
// Calcule la variation logarithmique pour cette étape
float drift = (mu - 0.5f * sigma * sigma) * dt;
float diffusion = sigma * sqrt(dt) * rand_std_normal;
return valeur_precedente * exp(drift + diffusion);
}
/**
* Affichage dans la console
*/
/**
2025-12-03 23:20:46 +01:00
* Initialisation, affichage des parties statiques
2025-11-30 09:48:43 +01:00
*/
void AffichageWindow()
{
window = subwin(stdscr, 19, 62, 0, 0);
2025-12-03 23:20:46 +01:00
2025-11-30 09:48:43 +01:00
box(window, 0, 0);
2025-12-03 23:20:46 +01:00
2025-11-30 09:48:43 +01:00
// Titre
mvwprintw(window, 1, 2, "Château d'eau (11/2024)");
2025-12-03 23:20:46 +01:00
2025-11-30 09:48:43 +01:00
// I/O
// Ligne du haut
mvwaddch(window, 2, 0, ACS_LTEE);
mvwhline(window, 2, 1, 0, 60);
mvwaddch(window, 2, 61, ACS_RTEE);
2025-12-03 23:20:46 +01:00
2025-11-30 09:48:43 +01:00
// Ligne du bas
mvwaddch(window, 7, 0, ACS_LTEE);
mvwhline(window, 7, 1, 0, 60);
mvwaddch(window, 7, 61, ACS_RTEE);
// Séparation verticale
mvwaddch(window, 2, 18, ACS_TTEE);
mvwvline(window, 3, 18, 0, 4);
mvwaddch(window, 7, 18, ACS_BTEE);
// Input : Boutons poussoirs
mvwprintw(window, 3, 2, "BP 1");
mvwprintw(window, 4, 2, "BP 2");
mvwprintw(window, 5, 2, "BP 3");
mvwprintw(window, 6, 2, "BP 4");
// Output : Moteurs pompes
mvwprintw(window, 3, 20, "Pompe 1");
mvwprintw(window, 4, 20, "Pompe 2");
mvwprintw(window, 5, 20, "Pompe 3");
mvwprintw(window, 6, 20, "Pompe 4");
// Mesures
mvwprintw(window, 8, 2, "Debit en sortie");
mvwprintw(window, 9, 2, "Debit en entrée");
mvwprintw(window, 10, 2, "Volume dans le réservoir");
2025-12-03 23:20:46 +01:00
2025-11-30 09:48:43 +01:00
// Graphe
2025-12-03 23:20:46 +01:00
2025-11-30 09:48:43 +01:00
// Ligne du haut
mvwaddch(window, 11, 0, ACS_LTEE);
mvwhline(window, 11, 1, 0, 60);
mvwaddch(window, 11, 61, ACS_RTEE);
2025-12-03 23:20:46 +01:00
2025-11-30 09:48:43 +01:00
// Ligne du bas
mvwaddch(window, 13, 0, ACS_LTEE);
mvwhline(window, 13, 1, 0, 60);
mvwaddch(window, 13, 61, ACS_RTEE);
// Graduations
for (int i = 1 ; i < 11; i++) {
mvwaddch(window, 11, 6 * i, ACS_TTEE);
mvwaddch(window, 13, 6 * i, ACS_BTEE);
}
mvwaddch(window, 13, 2 * 6, ACS_PLUS);
mvwaddch(window, 13, 6 * 6, ACS_PLUS);
mvwaddch(window, 13, 7 * 6, ACS_PLUS);
mvwaddch(window, 13, 57, ACS_TTEE); //9.5 x 6
mvwvline(window, 12, 6 * 10, 0, 1);
// Légende
mvwaddch(window, 16, 0, ACS_LTEE);
mvwhline(window, 16, 1, 0, 60);
mvwaddch(window, 16, 61, ACS_RTEE);
2025-12-03 23:20:46 +01:00
2025-11-30 09:48:43 +01:00
mvwprintw(window, 14, 2 * 6 - 1, "min");
mvwprintw(window, 14, 6 * 6 - 2, "low");
mvwprintw(window, 14, 7 * 6, "high");
mvwprintw(window, 14, 56, "max");
// Informations
2025-12-03 23:20:46 +01:00
mvwprintw(window, 17, 2, "Mode");
2025-11-30 09:48:43 +01:00
mvwaddch(window, 16, 18, ACS_TTEE);
mvwaddch(window, 18, 18, ACS_BTEE);
mvwvline(window, 17, 18, 0, 1);
mvwprintw(window, 17, 20, "Grafcet");
mvwaddch(window, 16, 31, ACS_TTEE);
mvwaddch(window, 18, 31, ACS_BTEE);
mvwvline(window, 17, 31, 0, 1);
mvwprintw(window, 17, 33, "min");
mvwprintw(window, 17, 46, "max");
wrefresh(window);
}
2025-12-03 23:27:56 +01:00
void Affichage()
2025-11-30 09:48:43 +01:00
{
mvwprintw(window, 1, 50, "%5.1f s", t_elapsed);
for (int i = OUT_PUMP_1; i <= OUT_PUMP_4; i++)
{
mvwprintw(window, (short)(i - OUT_PUMP_1 + 3), 30, " %c %5.1f s %dx", _digital[i].mode & 0x01 ? _digital[i].ivalue ? 'M' : '.' : 'X', _digital[i].duration, _digital[i].nb);
}
for (int i = IN_KEYBOARD_1; i <= IN_KEYBOARD_4; i++)
{
mvwprintw(window, (short)(i + 3), 10, _digital[_keyboard[i].input].ivalue ? "1" : "0");
}
mvwprintw(window, 8, 28, "%3d l/s", (int)_digital[IN_FLOW_OUT].dvalue);
mvwprintw(window, 9, 28, "%3d l/s", (int)_digital[IN_FLOW_IN].dvalue);
mvwprintw(window, 10, 29, "%5.2lf m3 (%+d l/s)", _digital[IN_TANK_LEVEL].dvalue, (int)_digital[IN_FLOW_DIF].dvalue);
AffichageGraphe(12, 1, _digital[IN_TANK_LEVEL].dvalue * 6);
/*
if (_digital[IN_SENSOR_LOW].mode & 0x01)
{
mvwprintw(window, 15, 1, " (%dx) (%dx) (%dx) (%dx)", _digital[IN_SENSOR_MIN].nb, _digital[IN_SENSOR_LOW].nb, _digital[IN_SENSOR_HIGH].nb, _digital[IN_SENSOR_MAX].nb);
}
else
{
mvwprintw(window, 15, 1, " (%dx) X (%dx) (%dx) (%dx)", _digital[IN_SENSOR_MIN].nb, _digital[IN_SENSOR_LOW].nb, _digital[IN_SENSOR_HIGH].nb, _digital[IN_SENSOR_MAX].nb);
}
*/
mvwprintw(window, 14, 15, "%d", _digital[IN_SENSOR_MIN].ivalue);
mvwprintw(window, 14, 38, "%d", _digital[IN_SENSOR_LOW].ivalue);
mvwprintw(window, 14, 47, "%d", _digital[IN_SENSOR_HIGH].ivalue);
mvwprintw(window, 14, 60, "%d", _digital[IN_SENSOR_MAX].ivalue);
mvwprintw(window, 15, 11, "(%dx) %s", _digital[IN_SENSOR_MIN].nb, _digital[IN_SENSOR_MIN].mode & 0x01 ? " " : "D");
mvwprintw(window, 15, 34, "(%dx) %s", _digital[IN_SENSOR_LOW].nb, _digital[IN_SENSOR_LOW].mode & 0x01 ? " " : "D");
mvwprintw(window, 15, 42, "(%dx) %s", _digital[IN_SENSOR_HIGH].nb, _digital[IN_SENSOR_HIGH].mode & 0x01 ? " " : "D");
mvwprintw(window, 15, 56, "(%dx)", _digital[IN_SENSOR_MAX].nb);
// Informations complémentaires
mvwprintw(window, 17, 2, _digital[OUT_DISPLAY_MODE].ivalue ? "Automatique" : "Manuel ");
mvwprintw(window, 17, 28, "%d", _digital[OUT_DISPLAY_GRAFCET].ivalue);
mvwprintw(window, 17, 38, "%4.2lf m3", _digital[IN_TANK_MIN].dvalue);
mvwprintw(window, 17, 51, "%4.2lf m3", _digital[IN_TANK_MAX].dvalue);
wrefresh(window);
}
void AffichageGraphe(int y, int x, double value)
{
int entier = (int)(value);
int i;
for (i = 0; i < entier; i++)
{
2025-12-03 23:20:46 +01:00
mvwaddwstr(window, y, x + i, L""); // U+2588
2025-11-30 09:48:43 +01:00
}
int frac = (int)((value - entier) * 4);
if (frac > 3) // 0.75 -> 0.99
{
2025-12-03 23:20:46 +01:00
mvwaddwstr(window, y, x + i, L""); // U+258A
2025-11-30 09:48:43 +01:00
entier += 1;
}
if (frac > 2) // 0.5 -> 0.99
{
2025-12-03 23:20:46 +01:00
mvwaddwstr(window, y, x + i, L""); // U+258C
2025-11-30 09:48:43 +01:00
entier += 1;
}
else if (frac > 1) // 0.25 -> 0.49
{
2025-12-03 23:20:46 +01:00
mvwaddwstr(window, y, x + i, L""); //U+258E
2025-11-30 09:48:43 +01:00
entier += 1;
}
for (int i = entier; i < 59; i++)
{
mvwprintw(window, y, x + i, " ");
2025-12-03 23:20:46 +01:00
}
2025-11-30 09:48:43 +01:00
}
/**
2025-12-03 23:20:46 +01:00
* Prometheus
2025-11-30 09:48:43 +01:00
*/
2025-12-03 23:20:46 +01:00
void InitPrometheus()
2025-11-30 09:48:43 +01:00
{
2025-12-07 15:51:07 +01:00
static Exposer exposer{"0.0.0.0:8099"};
// Le registre central
registry = std::make_shared<Registry>();
exposer.RegisterCollectable(registry);
auto& gauge_volume = BuildGauge()
.Name("geii_volume")
.Help("Volume en m3")
.Register(*registry);
2025-12-03 23:20:46 +01:00
2025-12-07 15:51:07 +01:00
tank_gauge = &gauge_volume.Add({});
2025-11-30 09:48:43 +01:00
2025-12-07 15:51:07 +01:00
auto& gauge_debit = BuildGauge()
.Name("geii_debit")
.Help("Débit en l/s")
.Register(*registry);
debit_entree = &gauge_debit.Add({{"numero", "entree"}});
debit_sortie = &gauge_debit.Add({{"numero", "sortie"}});
debit_p1 = &gauge_debit.Add({{"numero", "1"}});
debit_p2 = &gauge_debit.Add({{"numero", "2"}});
debit_p3 = &gauge_debit.Add({{"numero", "3"}});
debit_p4 = &gauge_debit.Add({{"numero", "4"}});
auto& counter_debit = BuildCounter()
.Name("geii_litre")
.Help("Volume en l")
.Register(*registry);
volume_p1 = &counter_debit.Add({{"numero", "1"}});
volume_p2 = &counter_debit.Add({{"numero", "2"}});
volume_p3 = &counter_debit.Add({{"numero", "3"}});
volume_p4 = &counter_debit.Add({{"numero", "4"}});
auto& hist_volume = BuildHistogram()
.Name("geii_tank")
.Help("volume du reservoir en m3")
.Register(*registry);
tank_histogram = &hist_volume.Add({}, buckets);
2025-11-30 09:48:43 +01:00
}
void ProcessPrometheus()
{
2025-12-07 15:51:07 +01:00
tank_gauge->Set(_digital[IN_TANK_LEVEL].dvalue);
tank_histogram->Observe(_digital[IN_TANK_LEVEL].dvalue);
debit_entree->Set(_digital[IN_FLOW_IN].dvalue);
debit_sortie->Set(_digital[IN_FLOW_OUT].dvalue);
debit_p1->Set(_digital[IN_FLOW_1].dvalue);
debit_p2->Set(_digital[IN_FLOW_2].dvalue);
debit_p3->Set(_digital[IN_FLOW_3].dvalue);
debit_p4->Set(_digital[IN_FLOW_4].dvalue);
2025-12-04 13:04:23 +01:00
2025-12-07 15:51:07 +01:00
volume_p1->Increment(_digital[IN_FLOW_1].dvalue * dt);
volume_p2->Increment(_digital[IN_FLOW_2].dvalue * dt);
volume_p3->Increment(_digital[IN_FLOW_3].dvalue * dt);
volume_p4->Increment(_digital[IN_FLOW_4].dvalue * dt);
2025-11-30 09:48:43 +01:00
}