Initial commit

This commit is contained in:
2025-11-30 09:48:43 +01:00
commit cd7d972808
8 changed files with 1414 additions and 0 deletions

29
.devcontainer/Dockerfile Normal file
View File

@@ -0,0 +1,29 @@
FROM debian:stable-slim
RUN RUN set -eux; \
apt-get update; \
apt-get install -y \
git \
build-essential \
cmake \
gdb;
RUN set -eux; \
apt-get update; \
apt-get install -y \
libncurses-dev \
libmicrohttpd-dev;\
apt-get clean
RUN set -eux; \
git clone https://github.com/jelmd/libprom.git; \
cd libprom; \
make build; \
cd prom/build; \
make install; \
cd ../../promhttp/build; \
make install;
WORKDIR /root
CMD ["sleep infinity"]

View File

@@ -0,0 +1,21 @@
{
"name": "Developpement C",
"build": {
"dockerfile": "Dockerfile"
},
"customizations": {
"vscode": {
"settings": {
"remote.downloadExtensionsLocally": true,
"telemetry.enableTelemetry": false,
"extensions.ignoreRecommendations": true,
"workbench.remoteIndicator.showExtensionRecommendations": false
},
"extensions": [
"ms-vscode.cpptools",
"ms-vscode.makefile-tools",
"danielpinto8zz6.c-cpp-compile-run"
]
}
}
}

1
.gitignore vendored Normal file
View File

@@ -0,0 +1 @@
/output/

5
.vscode/settings.json vendored Normal file
View File

@@ -0,0 +1,5 @@
{
"files.insertFinalNewline": true,
"files.trimTrailingWhitespace": true,
"files.trimFinalNewlines": true
}

33
.vscode/tasks.json vendored Normal file
View File

@@ -0,0 +1,33 @@
{
"tasks": [
{
"type": "cppbuild",
"label": "C/C++: gcc build active file",
"command": "/usr/bin/gcc",
"args": [
"-fdiagnostics-color=always",
"-g",
"${workspaceFolder}${pathSeparator}main.cpp",
"-lm",
"-lncursesw",
"-lprom",
"-lpromhttp",
"-lmicrohttpd",
"-o",
"${fileDirname}/${fileBasenameNoExtension}"
],
"options": {
"cwd": "${fileDirname}"
},
"problemMatcher": [
"$gcc"
],
"group": {
"kind": "build",
"isDefault": true
},
"detail": "Task generated by Debugger."
}
],
"version": "2.0.0"
}

424
AutomForArduino.cpp Normal file
View File

@@ -0,0 +1,424 @@
#include <stdio.h>
#include <time.h>
/* From Arduino.h */
#define HIGH 0x1
#define LOW 0x00
#define IO_INPUT 0x02
#define IO_OUTPUT 0x04
#define DIGITAL 0x08
#define ANALOG 0x10
#define PI 3.1415926535897932384626433832795
#define HALF_PI 1.5707963267948966192313216916398
#define true 1
#define false 0
// Temps
// Timestamp unix en millisecondes
// t_start : timestamp de départ
// t_backup : timestamp de la précédente itération
// t_elapsed : temps écoulé en secondes depuis le départ
// dt (delta t) : temps écoulé en secondes depuis la dernière itération
unsigned long t_start, t_backup;
double t_elapsed, dt;
unsigned long millis()
{
struct timespec now;
clock_gettime(CLOCK_REALTIME, &now);
return ((unsigned long)now.tv_sec) * 1000 + ((unsigned long)now.tv_nsec) / 1000000;
}
#define OP_DIGITAL_READ 0
#define OP_DIGITAL_WRITE 1
#define OP_ANALOG_READ 2
#define OP_ANALOG_WRITE 3
#define OP_PIN_MODE 4
typedef struct PinIO
{
unsigned char mode;
int ivalue;
double dvalue;
int error; // % = 1 /error ex 1 / 20 = 5 %
double efficacite; // 0 - 100%
unsigned long start;
unsigned long time;
double duration;
unsigned int nb; // compteur d'activation
int memory;
unsigned char raising;
unsigned char falling;
} PinIO;
PinIO _digital[256];
void pinMode(unsigned char p, unsigned char mode)
{
_digital[p].mode = 0x01 | mode;
_digital[p].ivalue = 0;
_digital[p].dvalue = 0.0;
_digital[p].nb = 0;
_digital[p].time = 0.0;
_digital[p].duration = 0.0;
_digital[p].start = 0;
_digital[p].raising = 0;
_digital[p].memory = 0;
}
/* KEYBOARD */
typedef struct
{
char input;
int vKey;
} KeyboardIO;
#define NB_KEYBOARD 10
KeyboardIO _keyboard[NB_KEYBOARD];
void LireClavier(int ch)
{
for (int i = 0; i < NB_KEYBOARD; i++)
{
_digital[_keyboard[i].input].ivalue = (ch == _keyboard[i].vKey);
_digital[_keyboard[i].input].raising = _digital[_keyboard[i].input].ivalue > _digital[_keyboard[i].input].memory;
_digital[_keyboard[i].input].falling = _digital[_keyboard[i].input].ivalue < _digital[_keyboard[i].input].memory;
_digital[_keyboard[i].input].memory = _digital[_keyboard[i].input].ivalue;
}
}
/* ********************************************************
* TEMPORISATION RETARD A LA MONTEE *
* La sortie passe à 1 au bout de la tempo *
******************************************************** */
class TemporisationRetardMontee
{
// methodes
public :
// Contructeur qui prend la duree souhaitee de la temporisation
TemporisationRetardMontee(unsigned long duree)
{
this->duree = duree;
sortie = false;
captureTemps = false;
}
// Activation de la temporisation. Doit etre fait tout le temps de la duree de la tempo
void activation()
{
// Capture du temps de reference
if(!captureTemps)
{
debut = millis();
captureTemps = true;
}
// Calcul du temps ecoule depuis le temps de reference
tempsEcoule = millis() - debut;
// Mise a 1 de la fin de tempo
if (tempsEcoule >= duree)
{
sortie = true;
captureTemps = false;
}
else
{
sortie = false;
}
}
// Precharge de la temporisation
void setDuree(unsigned long majduree)
{
duree = majduree;
sortie = false;
captureTemps = false;
}
// Interrogation du bit de fin de tempo
bool getSortie()
{
return(sortie);
}
// Recuperation du temps ecoule depuis le debut si necessaire
unsigned long getTempsEcoule()
{
return(tempsEcoule);
}
// Attributs
private:
unsigned long duree;
unsigned long debut;
unsigned long tempsEcoule;
bool captureTemps;
bool sortie;
};
/********************************************************
* TEMPORISATION RETARD A LA DESCENTE *
* La sortie passe à 0 au bout de la tempo *
*********************************************************/
class TemporisationRetardDescente
{
public :
// Contructeur qui prend la duree souhaitee de la temporisation
TemporisationRetardDescente(unsigned long duree)
{
this->duree = duree;
sortie = false;
captureTemps = false;
}
// Activation de la temporisation. Doit etre fait tout le temps de la duree de la tempo
void activation()
{
// Capture du temps de reference
if(!captureTemps)
{
debut = millis();
captureTemps = true;
sortie = true;
}
// Calcul du temps ecoule depuis le temps de reference
tempsEcoule = millis() - debut;
// Mise a 0 de la fin de tempo
if (tempsEcoule >= duree)
{
sortie = false;
captureTemps = false;
}
}
// Precharge de la temporisation
void setDuree(unsigned long majduree)
{
duree = majduree;
sortie = false;
captureTemps = false;
}
// Interrogration du bit de fin de tempo
bool getSortie()
{
return(sortie);
}
// Recuperation du temps ecoule depuis le debut si necessaire
unsigned long getTempsEcoule()
{
return(tempsEcoule);
}
private:
unsigned long duree;
unsigned long debut;
unsigned long tempsEcoule;
bool captureTemps;
bool sortie;
};
/********************************************************
**** CLIGNOTEUR *************************************
*********************************************************/
class Clignoteur
{
// methodes
public :
// Construteur qui prend en parametre le temps haut ou bas souhaitee
Clignoteur(int baseDeTemps)
{
this->baseDeTemps = baseDeTemps;
}
// Fonction qui renvoie true si le clignoteur est ├á l'├®tat haut et false s'il est ├á l'├®tat bas
bool statut()
{
return ((millis() / baseDeTemps) % 2 == 1);
}
// Attributs
private:
int baseDeTemps;
};
/********************************************************
**** COMPTEUR *************************************
**** ATTENTION : Il faut gerer le front montant dans le programme
*********************************************************/
class Compteur
{
// methodes
public :
// Constructeur qui prend en parametre la valeur de preselection
Compteur(int valeurPreselection)
{
this->valeurPreselection = valeurPreselection;
valeur = 0;
}
// Incrementation du compteur
void incrementer()
{
valeur++;
}
// Decrementation du compteur
void decrementer()
{
valeur--;
}
// remise a zero du compteur
void remettreAZero()
{
valeur = 0;
}
// recuperation de la valeur courante
int getValeurCourante()
{
return(valeur);
}
// est-ce que la preselection est atteinte (sortie Q compteur Siemens ou Schnieder)
bool getSortie()
{
return(valeur == valeurPreselection);
}
// Attributs
private:
int valeur;
int valeurPreselection;
};
/********************************************************
**** MISE A L'ECHELLE DE VALEUR ************************
*********************************************************/
class MiseAEchelle
{
public :
// Constructeur qui ne prend en parametre la plage d'entree et la plage de sortie
MiseAEchelle(float minEntree,float maxEntree,float minSortie,float maxSortie)
{
this->minEntree = minEntree;
this->maxEntree = maxEntree;
this->minSortie = minSortie;
this->maxSortie = maxSortie;
}
// fonction de conversion qui prend la valeur a convertir et renvoie la valeur convertie
float convertir(float valeurAConvertir)
{
if(valeurAConvertir >= minEntree && valeurAConvertir <= maxEntree)
{
float norm = (1 / (maxEntree - minEntree)) * (valeurAConvertir - minEntree);
float scale = (maxSortie - minSortie) * norm + minSortie;
return(scale);
}
return(-1000);
}
// Attributs
private:
float minEntree;
float minSortie;
float maxEntree;
float maxSortie;
};
/* READ */
int digitalRead(int p)
{
return ((_digital[p].mode & IO_INPUT) && (_digital[p].mode & DIGITAL) && (_digital[p].mode & 0x01)) ? _digital[p].ivalue : 0;
}
double analogRead(int p)
{
return ((_digital[p].mode & IO_INPUT) && (_digital[p].mode & ANALOG) && (_digital[p].mode & 0x01)) ? _digital[p].dvalue : 0.0;
}
/* WRITE */
void digitalWrite(unsigned int p, int value)
{
if (p < 0 || p > 255)
{
printf("Pin %d is out of Range.", p);
return;
}
// En panne !
if (!(_digital[p].mode & 0x01))
{
return;
}
if (!(_digital[p].mode & IO_OUTPUT && _digital[p].mode & DIGITAL))
{
printf("Pin %d is not a digital input.", p);
return;
}
unsigned long m = millis();
if (value != _digital[p].ivalue)
{
_digital[p].time = _digital[p].time > 5000 ? 0 : 5000 - _digital[p].time;
}
else
{
_digital[p].time += m - _digital[p].start;
}
if (value && !_digital[p].ivalue)
{
_digital[p].start = m;
_digital[p].nb += 1;
}
else if (value)
{
_digital[p].duration += dt;
}
_digital[p].ivalue = value;
}
void analogWrite(unsigned int p, double value)
{
if (p < 0 || p > 31)
{
printf("Pin %d is out of Range.", p);
return;
}
// En panne
if (!(_digital[p].mode & 0x01))
{
return;
}
if (!(_digital[p].mode & IO_OUTPUT) || !(_digital[p].mode & ANALOG))
{
printf("Pin %d is not a analog input.", p);
return;
}
_digital[p].dvalue = value;
}
/* ********************************************************
* Console *
* *
******************************************************** */
void ConsoleInit()
{
setlocale(LC_ALL, ""); // Activer le support des caractères Unicode
setlocale(LC_NUMERIC, "C");
initscr(); // Initialise ncurses
raw(); // Mode brut, sans besoin de validation par Entrée
keypad(stdscr, TRUE); // Active les touches spéciales comme ESC
nodelay(stdscr, TRUE); // Mode non-bloquant pour getch()
noecho(); // Ne pas afficher les touches appuyées
curs_set(0); // Masquer le curseur
}

819
main.cpp Normal file
View File

@@ -0,0 +1,819 @@
#include <unistd.h>
#include <ncurses.h>
#include <math.h>
#include <locale.h>
#include <array>
#include "main.h"
#include "AutomForArduino.cpp"
extern "C" {
#include "libprom/prom.h"
#include "libprom/promhttp.h"
}
// Constantes de fonctionnement
#define LEVEL_MIN 2
#define FLOW_PER_PUMP 150
WINDOW *window;
int etape = 10; // Étape du grafcet : début Automatique
int bp_mode, bp_mode_fm;
unsigned short pompe1, pompe2, pompe3, pompe4; // bouton des pompes 0 (arrêt) / 1 (marche)
unsigned short pompe1_old, pompe2_old, pompe3_old, pompe4_old;
unsigned short sensor_max, sensor_high, sensor_low, sensor_min;
float TankInitalValue = 7;
TemporisationRetardMontee tempo1(500);
TemporisationRetardMontee tempo2(1000);
TemporisationRetardMontee tempo3(1500);
TemporisationRetardMontee tempo4(2000);
// Prometheus
// ************************************************************
struct MHD_Daemon *server;
prom_counter_t *pm_pompe;
prom_gauge_t *pm_debit;
// ************************************************************
int main(int argc, char *argv[])
{
/* Initialisation */
ConsoleInit();
AffichageWindow();
InitPrometheus();
ProcessInitKeyboard();
ProcessInitIO();
ProcessInitValues();
while (1)
{
int ch = getch(); // Lit l'entrée du clavier sans bloquer
// **** Break loop if escape key (27) is pressed
if (ch == 27 || _digital[OUT_END].ivalue) {
break;
}
// **** Beep
if (_digital[OUT_BEEP].ivalue)
{
beep();
_digital[OUT_BEEP].ivalue = false;
}
Process();
LireClavier(ch);
LireEntree();
EvolutionGrafcet();
Actions();
ProcessPrometheus();
ProcessException();
usleep(100000);
}
endwin(); // Termine ncurses et rétablit le terminal
puts("Fin du programme");
pcr_destroy(PROM_COLLECTOR_REGISTRY);
promhttp_stop_daemon(server);
return 0;
}
/**
* Programme
*/
void LireEntree()
{
int input;
input = digitalRead(IN_KEYBOARD_A);
bp_mode_fm = (input > bp_mode);
bp_mode = input;
sensor_min = digitalRead(IN_SENSOR_MIN);
sensor_low = digitalRead(IN_SENSOR_LOW);
sensor_high = digitalRead(IN_SENSOR_HIGH);
sensor_max = digitalRead(IN_SENSOR_MAX);
}
void EvolutionGrafcet()
{
int etape_futur = etape;
if (etape < 10 && bp_mode_fm)
{
etape_futur = 10;
pompe1 = pompe2 = pompe3 = pompe4 = 0;
}
if (etape <= 2 && _digital[IN_KEYBOARD_1].raising)
{
pompe1 = !pompe1;
}
if (etape <= 2 && _digital[IN_KEYBOARD_2].raising)
{
pompe2 = !pompe2;
}
if (etape <= 2 && _digital[IN_KEYBOARD_3].raising)
{
pompe3 = !pompe3;
}
if (etape <= 2 && _digital[IN_KEYBOARD_4].raising)
{
pompe4 = !pompe4;
}
if (etape == 0 && !sensor_min)
{
etape_futur = 1;
}
if (etape == 1)
{
etape_futur = 2;
}
if (etape == 2 && sensor_min)
{
etape_futur = 0;
}
if (etape >= 10 && bp_mode_fm)
{
etape_futur = 0;
pompe1 = pompe2 = pompe3 = pompe4 = 0;
}
if (sensor_max)
{
pompe1 = pompe2 = pompe3 = pompe4 = 0;
}
/* Automatique */
if (etape == 10 && !sensor_low && !sensor_high)
{
etape_futur = 11;
}
if (etape == 11 && sensor_high)
{
etape_futur = 10;
}
if (etape == 11 && tempo1.getSortie())
{
etape_futur = 12;
}
if (etape == 12 && sensor_high)
{
etape_futur = 13;
}
if (etape == 12 && tempo2.getSortie())
{
etape_futur = 14; // Allumer le moteur 2
}
if (etape == 13 && tempo1.getSortie())
{
etape_futur = 10;
}
if (etape == 13 && !sensor_low && !sensor_high)
{
etape_futur = 12;
}
if (etape == 14 && sensor_high)
{
etape_futur = 15;
}
if (etape == 14 && tempo3.getSortie())
{
etape_futur = 16;
}
if (etape == 15 && tempo1.getSortie())
{
etape_futur = 13;
}
if (etape == 15 && !sensor_low && !sensor_high)
{
etape_futur = 14;
}
if (etape == 16 && sensor_high)
{
etape_futur = 17;
}
if (etape == 16 && tempo4.getSortie())
{
etape_futur = 18;
}
if (etape == 17 && tempo1.getSortie())
{
etape_futur = 15;
}
if (etape == 17 && !sensor_low && !sensor_high)
{
etape_futur = 16;
}
if (etape == 18 && sensor_high)
{
etape_futur = 19;
}
if (etape == 19 && tempo1.getSortie())
{
etape_futur = 17;
}
if (etape == 19 && !sensor_low && !sensor_high)
{
etape_futur = 18;
}
/* Fin de mode automatique */
if (etape != etape_futur)
{
etape = etape_futur;
}
}
void Actions()
{
digitalWrite(OUT_DISPLAY_GRAFCET, etape);
digitalWrite(OUT_DISPLAY_MODE, etape >= 10);
digitalWrite(OUT_PUMP_1, !sensor_max && (pompe1 == 1 || etape >= 12));
digitalWrite(OUT_PUMP_2, !sensor_max && (pompe2 == 1 || etape >= 14));
digitalWrite(OUT_PUMP_3, !sensor_max && (pompe3 == 1 || etape >= 16));
digitalWrite(OUT_PUMP_4, !sensor_max && (pompe4 == 1 || etape >= 18));
// digitalWrite(OUT_BEEP, etape == 1);
if (etape >= 11)
{
tempo1.activation();
tempo2.activation();
tempo3.activation();
tempo4.activation();
}
}
/**
* Process
*/
void ProcessInitKeyboard()
{
_keyboard[0].vKey = '1';
_keyboard[0].input = IN_KEYBOARD_1;
_keyboard[1].vKey = '2';
_keyboard[1].input = IN_KEYBOARD_2;
_keyboard[2].vKey = '3';
_keyboard[2].input = IN_KEYBOARD_3;
_keyboard[3].vKey = '4';
_keyboard[3].input = IN_KEYBOARD_4;
_keyboard[4].vKey = 'a';
_keyboard[4].input = IN_KEYBOARD_A;
_keyboard[5].vKey = 'x';
_keyboard[5].input = IN_KEYBOARD_X;
_keyboard[6].vKey = '6';
_keyboard[6].input = IN_KEYBOARD_7;
_keyboard[7].vKey = '7';
_keyboard[7].input = IN_KEYBOARD_8;
_keyboard[8].vKey = '8';
_keyboard[8].input = IN_KEYBOARD_9;
_keyboard[9].vKey = '9';
_keyboard[9].input = IN_KEYBOARD_0;
for (int i = 0; i < NB_KEYBOARD; i++)
{
_digital[_keyboard[i].input].mode = OP_DIGITAL_READ;
}
}
void ProcessInitIO()
{
pinMode(IN_KEYBOARD_1, IO_INPUT | DIGITAL);
pinMode(IN_KEYBOARD_2, IO_INPUT | DIGITAL);
pinMode(IN_KEYBOARD_3, IO_INPUT | DIGITAL);
pinMode(IN_KEYBOARD_4, IO_INPUT | DIGITAL);
pinMode(IN_KEYBOARD_A, IO_INPUT | DIGITAL);
pinMode(IN_KEYBOARD_7, IO_INPUT | DIGITAL);
pinMode(IN_KEYBOARD_8, IO_INPUT | DIGITAL);
pinMode(IN_KEYBOARD_9, IO_INPUT | DIGITAL);
pinMode(IN_KEYBOARD_0, IO_INPUT | DIGITAL);
pinMode(IN_KEYBOARD_X, IO_INPUT | DIGITAL);
pinMode(IN_SENSOR_MIN, IO_INPUT | DIGITAL);
pinMode(IN_SENSOR_LOW, IO_INPUT | DIGITAL);
pinMode(IN_SENSOR_HIGH, IO_INPUT | DIGITAL);
pinMode(IN_SENSOR_MAX, IO_INPUT | DIGITAL);
pinMode(IN_TANK_LEVEL, IO_INPUT | ANALOG);
pinMode(IN_FLOW_OUT, IO_INPUT | ANALOG);
pinMode(IN_FLOW_IN, IO_INPUT | ANALOG);
pinMode(IN_FLOW_DIF, IO_INPUT | ANALOG);
pinMode(IN_TANK_MIN, IO_INPUT | ANALOG);
pinMode(IN_TANK_MAX, IO_INPUT | ANALOG);
pinMode(IN_FLOW_CAP, IO_INPUT | ANALOG);
pinMode(IN_FLOW_1, IO_INPUT | ANALOG);
pinMode(IN_FLOW_2, IO_INPUT | ANALOG);
pinMode(IN_FLOW_3, IO_INPUT | ANALOG);
pinMode(IN_FLOW_4, IO_INPUT | ANALOG);
pinMode(OUT_PUMP_1, IO_OUTPUT | DIGITAL);
pinMode(OUT_PUMP_2, IO_OUTPUT | DIGITAL);
pinMode(OUT_PUMP_3, IO_OUTPUT | DIGITAL);
pinMode(OUT_PUMP_4, IO_OUTPUT | DIGITAL);
pinMode(OUT_DISPLAY_MODE, IO_OUTPUT | DIGITAL);
pinMode(OUT_DISPLAY_GRAFCET, IO_OUTPUT | DIGITAL);
pinMode(OUT_LEVEL_MIN, IO_OUTPUT | ANALOG);
pinMode(OUT_LEVEL_LOW, IO_OUTPUT | ANALOG);
pinMode(OUT_LEVEL_HIGH, IO_OUTPUT | ANALOG);
pinMode(OUT_LEVEL_MAX, IO_OUTPUT | ANALOG);
pinMode(OUT_FLOW_PER_PUMP, IO_OUTPUT | ANALOG);
pinMode(OUT_FLOW_OUT_AMPLITUDE, IO_OUTPUT | ANALOG);
pinMode(OUT_BEEP, IO_OUTPUT | DIGITAL);
_digital[OUT_PUMP_1].error = 30;
_digital[OUT_PUMP_1].efficacite = 1.0;
//_digital[OUT_PUMP_1].time = 4294967295; //UINT_MAX
_digital[OUT_PUMP_2].error = 30;
_digital[OUT_PUMP_2].efficacite = 0.72;
//_digital[OUT_PUMP_2].time = 4294967295;
_digital[OUT_PUMP_3].error = 10;
_digital[OUT_PUMP_3].efficacite = 1.0;
//_digital[OUT_PUMP_3].time = 4294967295;
_digital[OUT_PUMP_4].error = 30;
_digital[OUT_PUMP_4].efficacite = 1.0;
//_digital[OUT_PUMP_4].time = 4294967295;
}
void ProcessInitValues()
{
t_start = t_backup = millis();
srand(time(NULL));
_digital[IN_TANK_LEVEL].dvalue = _digital[IN_TANK_MAX].dvalue = _digital[IN_TANK_MIN].dvalue = TankInitalValue;
_digital[OUT_FLOW_PER_PUMP].dvalue = FLOW_PER_PUMP;
_digital[OUT_FLOW_OUT_AMPLITUDE].dvalue = 100.0;
_digital[OUT_LEVEL_MIN].dvalue = LEVEL_MIN;
_digital[OUT_LEVEL_LOW].dvalue = 6;
_digital[OUT_LEVEL_HIGH].dvalue = 7;
_digital[OUT_LEVEL_MAX].dvalue = 9.5;
_digital[IN_FLOW_OUT].dvalue = 100.0;
}
/**
* Fonctionnement des moteurs
*/
double ProcessMoteur(int i)
{
double vitesse = 1.0;
double t = _digital[i].time / 5000.0;
if (_digital[i].ivalue)
{
if (_digital[i].time < 2500)
{
vitesse = 4 * pow(t, 3.0);
}
else if (_digital[i].time < 5000)
{
vitesse = 1.0 - pow(2 - 2 * t, 3) / 2.0;
}
else
{
vitesse = 1.0 + 1.0 / (_digital[i].error * 2.0) - rand() / (double)RAND_MAX / _digital[i].error;
}
}
else
{
if (_digital[i].time < 2500)
{
vitesse = 1 - 4 * pow(t, 3.0);
}
else if (_digital[i].time < 5000)
{
vitesse = pow(2 - 2 * t, 3) / 2.0;
// vitesse = 1 - pow(t, 4.0);
}
else
{
vitesse = 0.0;
}
}
return _digital[OUT_FLOW_PER_PUMP].dvalue * _digital[i].efficacite * vitesse;
}
void ProcessException()
{
if (t_elapsed > 30) {
_digital[OUT_PUMP_1].mode = 0;
} else if (t_elapsed > 15) {
_digital[IN_SENSOR_LOW].mode = 0;
}
}
void Process()
{
// *****
unsigned long t = millis();
t_elapsed = (t - t_start) / 1000.0;
dt = (t - t_backup) / 1000.0;
// ***** FLOW OUT
if (_digital[IN_TANK_LEVEL].dvalue > 1.0)
{
//_digital[IN_FLOW_OUT].dvalue = SimulConsoSinusoidale(t);
_digital[IN_FLOW_OUT].dvalue = SimulConsoBrown(_digital[IN_FLOW_OUT].dvalue);
}
else
{
if (_digital[IN_FLOW_CAP].dvalue == 0.0) {
_digital[IN_FLOW_CAP].dvalue = _digital[IN_FLOW_OUT].dvalue;
}
_digital[IN_FLOW_OUT].dvalue = _digital[IN_FLOW_CAP].dvalue * _digital[IN_TANK_LEVEL].dvalue;
}
// ***** FLOW IN
_digital[IN_FLOW_IN].dvalue = 0;
for (int i = OUT_PUMP_1; i <= OUT_PUMP_4; i++)
{
_digital[i - 4].dvalue = ProcessMoteur(i);
_digital[IN_FLOW_IN].dvalue += _digital[i - 4].dvalue;
}
_digital[IN_FLOW_DIF].dvalue = _digital[IN_FLOW_IN].dvalue - _digital[IN_FLOW_OUT].dvalue;
// ***** TANK LEVEL
_digital[IN_TANK_LEVEL].dvalue += (_digital[IN_FLOW_IN].dvalue - _digital[IN_FLOW_OUT].dvalue) / 1000.0 * dt;
if (_digital[IN_TANK_LEVEL].dvalue > 10.0) {
_digital[IN_TANK_LEVEL].dvalue = 10.0;
}
if (_digital[IN_TANK_LEVEL].dvalue > _digital[IN_TANK_MAX].dvalue) {
_digital[IN_TANK_MAX].dvalue = _digital[IN_TANK_LEVEL].dvalue;
}
if (_digital[IN_TANK_LEVEL].dvalue < _digital[IN_TANK_MIN].dvalue) {
_digital[IN_TANK_MIN].dvalue = _digital[IN_TANK_LEVEL].dvalue;
}
// **** KEYBOARD
if (_digital[IN_KEYBOARD_X].raising)
{
_digital[IN_SENSOR_LOW].mode = _digital[IN_SENSOR_LOW].mode ^ 0x01;
}
for (int i = IN_KEYBOARD_7; i <= IN_KEYBOARD_0; i++)
{
if (_digital[i].raising)
{
unsigned char p = i + (OUT_PUMP_1 - IN_KEYBOARD_7);
_digital[p].mode ^= 0x01;
if (!(_digital[p].mode & 0x01)) {
_digital[p].ivalue = 0;
_digital[p].dvalue = 0.0;
}
}
}
// **** SENSOR
int test;
test = (_digital[IN_TANK_LEVEL].dvalue > _digital[OUT_LEVEL_MIN].dvalue);
if (_digital[IN_SENSOR_MIN].ivalue != test)
{
if (test == 0)
{
_digital[IN_SENSOR_MIN].nb += 1;
}
_digital[IN_SENSOR_MIN].ivalue = test;
}
test = _digital[IN_TANK_LEVEL].dvalue > _digital[OUT_LEVEL_LOW].dvalue && _digital[IN_SENSOR_LOW].mode & 0x01;
if (_digital[IN_SENSOR_LOW].ivalue != test)
{
if (test == 0)
{
_digital[IN_SENSOR_LOW].nb += 1;
}
_digital[IN_SENSOR_LOW].ivalue = test;
}
test = _digital[IN_TANK_LEVEL].dvalue > _digital[OUT_LEVEL_MAX].dvalue;
if (_digital[IN_SENSOR_MAX].ivalue != test)
{
if (test == 1)
{
_digital[IN_SENSOR_MAX].nb += 1;
}
_digital[IN_SENSOR_MAX].ivalue = test;
}
test = _digital[IN_TANK_LEVEL].dvalue > _digital[OUT_LEVEL_HIGH].dvalue;
if (_digital[IN_SENSOR_HIGH].ivalue != test)
{
if (test == 1)
{
_digital[IN_SENSOR_HIGH].nb += 1;
}
_digital[IN_SENSOR_HIGH].ivalue = test;
}
Affichage(t);
t_backup = t;
}
double SimulConsoSinusoidale(long t)
{
double alea = ((long)(t / 100.0) % 600) * 3 / 1800.0 * PI;
//mvprintw(18, 0, "%ld %f", (long)(t / 100.0), alea);
return 100 + cos(alea) * cos(alea) * _digital[OUT_FLOW_OUT_AMPLITUDE].dvalue;
}
// dt : Intervalle de temps
double SimulConsoBrown(double valeur_precedente)
{
float mu = 0.01 * -((((int)t_elapsed / 30) % 2) * 2 - 1); // Taux de croissance (1%)
float sigma = 0.05; // Volatilité (5%)
mvprintw(8, 40, "(µ %.1f %% ; σ %.1f %%) ", mu * 100, sigma * 100);
// Nombre aléatoire compris dans [-1 +1]
float rand_std_normal = ((double)rand() / RAND_MAX) * 2.0 - 1.0;
// Calcule la variation logarithmique pour cette étape
float drift = (mu - 0.5f * sigma * sigma) * dt;
float diffusion = sigma * sqrt(dt) * rand_std_normal;
return valeur_precedente * exp(drift + diffusion);
}
/**
* Affichage dans la console
*/
/**
* Initialisation, affichage des parties statiques
*/
void AffichageWindow()
{
window = subwin(stdscr, 19, 62, 0, 0);
box(window, 0, 0);
// Titre
mvwprintw(window, 1, 2, "Château d'eau (11/2024)");
// I/O
// Ligne du haut
mvwaddch(window, 2, 0, ACS_LTEE);
mvwhline(window, 2, 1, 0, 60);
mvwaddch(window, 2, 61, ACS_RTEE);
// Ligne du bas
mvwaddch(window, 7, 0, ACS_LTEE);
mvwhline(window, 7, 1, 0, 60);
mvwaddch(window, 7, 61, ACS_RTEE);
// Séparation verticale
mvwaddch(window, 2, 18, ACS_TTEE);
mvwvline(window, 3, 18, 0, 4);
mvwaddch(window, 7, 18, ACS_BTEE);
// Input : Boutons poussoirs
mvwprintw(window, 3, 2, "BP 1");
mvwprintw(window, 4, 2, "BP 2");
mvwprintw(window, 5, 2, "BP 3");
mvwprintw(window, 6, 2, "BP 4");
// Output : Moteurs pompes
mvwprintw(window, 3, 20, "Pompe 1");
mvwprintw(window, 4, 20, "Pompe 2");
mvwprintw(window, 5, 20, "Pompe 3");
mvwprintw(window, 6, 20, "Pompe 4");
// Mesures
mvwprintw(window, 8, 2, "Debit en sortie");
mvwprintw(window, 9, 2, "Debit en entrée");
mvwprintw(window, 10, 2, "Volume dans le réservoir");
// Graphe
// Ligne du haut
mvwaddch(window, 11, 0, ACS_LTEE);
mvwhline(window, 11, 1, 0, 60);
mvwaddch(window, 11, 61, ACS_RTEE);
// Ligne du bas
mvwaddch(window, 13, 0, ACS_LTEE);
mvwhline(window, 13, 1, 0, 60);
mvwaddch(window, 13, 61, ACS_RTEE);
// Graduations
for (int i = 1 ; i < 11; i++) {
mvwaddch(window, 11, 6 * i, ACS_TTEE);
mvwaddch(window, 13, 6 * i, ACS_BTEE);
}
mvwaddch(window, 13, 2 * 6, ACS_PLUS);
mvwaddch(window, 13, 6 * 6, ACS_PLUS);
mvwaddch(window, 13, 7 * 6, ACS_PLUS);
mvwaddch(window, 13, 57, ACS_TTEE); //9.5 x 6
mvwvline(window, 12, 6 * 10, 0, 1);
// Légende
mvwaddch(window, 16, 0, ACS_LTEE);
mvwhline(window, 16, 1, 0, 60);
mvwaddch(window, 16, 61, ACS_RTEE);
mvwprintw(window, 14, 2 * 6 - 1, "min");
mvwprintw(window, 14, 6 * 6 - 2, "low");
mvwprintw(window, 14, 7 * 6, "high");
mvwprintw(window, 14, 56, "max");
// Informations
mvwprintw(window, 17, 2, "Mode");
mvwaddch(window, 16, 18, ACS_TTEE);
mvwaddch(window, 18, 18, ACS_BTEE);
mvwvline(window, 17, 18, 0, 1);
mvwprintw(window, 17, 20, "Grafcet");
mvwaddch(window, 16, 31, ACS_TTEE);
mvwaddch(window, 18, 31, ACS_BTEE);
mvwvline(window, 17, 31, 0, 1);
mvwprintw(window, 17, 33, "min");
mvwprintw(window, 17, 46, "max");
wrefresh(window);
}
void Affichage(unsigned long t)
{
mvwprintw(window, 1, 50, "%5.1f s", t_elapsed);
for (int i = OUT_PUMP_1; i <= OUT_PUMP_4; i++)
{
mvwprintw(window, (short)(i - OUT_PUMP_1 + 3), 30, " %c %5.1f s %dx", _digital[i].mode & 0x01 ? _digital[i].ivalue ? 'M' : '.' : 'X', _digital[i].duration, _digital[i].nb);
}
for (int i = IN_KEYBOARD_1; i <= IN_KEYBOARD_4; i++)
{
mvwprintw(window, (short)(i + 3), 10, _digital[_keyboard[i].input].ivalue ? "1" : "0");
}
mvwprintw(window, 8, 28, "%3d l/s", (int)_digital[IN_FLOW_OUT].dvalue);
mvwprintw(window, 9, 28, "%3d l/s", (int)_digital[IN_FLOW_IN].dvalue);
mvwprintw(window, 10, 29, "%5.2lf m3 (%+d l/s)", _digital[IN_TANK_LEVEL].dvalue, (int)_digital[IN_FLOW_DIF].dvalue);
AffichageGraphe(12, 1, _digital[IN_TANK_LEVEL].dvalue * 6);
/*
if (_digital[IN_SENSOR_LOW].mode & 0x01)
{
mvwprintw(window, 15, 1, " (%dx) (%dx) (%dx) (%dx)", _digital[IN_SENSOR_MIN].nb, _digital[IN_SENSOR_LOW].nb, _digital[IN_SENSOR_HIGH].nb, _digital[IN_SENSOR_MAX].nb);
}
else
{
mvwprintw(window, 15, 1, " (%dx) X (%dx) (%dx) (%dx)", _digital[IN_SENSOR_MIN].nb, _digital[IN_SENSOR_LOW].nb, _digital[IN_SENSOR_HIGH].nb, _digital[IN_SENSOR_MAX].nb);
}
*/
mvwprintw(window, 14, 15, "%d", _digital[IN_SENSOR_MIN].ivalue);
mvwprintw(window, 14, 38, "%d", _digital[IN_SENSOR_LOW].ivalue);
mvwprintw(window, 14, 47, "%d", _digital[IN_SENSOR_HIGH].ivalue);
mvwprintw(window, 14, 60, "%d", _digital[IN_SENSOR_MAX].ivalue);
mvwprintw(window, 15, 11, "(%dx) %s", _digital[IN_SENSOR_MIN].nb, _digital[IN_SENSOR_MIN].mode & 0x01 ? " " : "D");
mvwprintw(window, 15, 34, "(%dx) %s", _digital[IN_SENSOR_LOW].nb, _digital[IN_SENSOR_LOW].mode & 0x01 ? " " : "D");
mvwprintw(window, 15, 42, "(%dx) %s", _digital[IN_SENSOR_HIGH].nb, _digital[IN_SENSOR_HIGH].mode & 0x01 ? " " : "D");
mvwprintw(window, 15, 56, "(%dx)", _digital[IN_SENSOR_MAX].nb);
// Informations complémentaires
mvwprintw(window, 17, 2, _digital[OUT_DISPLAY_MODE].ivalue ? "Automatique" : "Manuel ");
mvwprintw(window, 17, 28, "%d", _digital[OUT_DISPLAY_GRAFCET].ivalue);
mvwprintw(window, 17, 38, "%4.2lf m3", _digital[IN_TANK_MIN].dvalue);
mvwprintw(window, 17, 51, "%4.2lf m3", _digital[IN_TANK_MAX].dvalue);
wrefresh(window);
}
void AffichageGraphe(int y, int x, double value)
{
int entier = (int)(value);
int i;
for (i = 0; i < entier; i++)
{
mvwaddwstr(window, y, x + i, L""); // U+2588
}
int frac = (int)((value - entier) * 4);
if (frac > 3) // 0.75 -> 0.99
{
mvwaddwstr(window, y, x + i, L""); // U+258A
entier += 1;
}
if (frac > 2) // 0.5 -> 0.99
{
mvwaddwstr(window, y, x + i, L""); // U+258C
entier += 1;
}
else if (frac > 1) // 0.25 -> 0.49
{
mvwaddwstr(window, y, x + i, L""); //U+258E
entier += 1;
}
for (int i = entier; i < 59; i++)
{
mvwprintw(window, y, x + i, " ");
}
}
/**
* Prometheus
*/
void InitPrometheus()
{
int result = pcr_init(0,"geii_");
std::array<const char*, 1> labels = { "numero" };
pm_pompe = prom_counter_new("pompe_on", "Mise en marche de la pompe"
, labels.size(), labels.data());
pcr_register_metric(pm_pompe);
pm_debit = prom_gauge_new("debit", "Débit en l/s"
, labels.size(), labels.data());
pcr_register_metric(pm_debit);
promhttp_set_active_collector_registry(NULL);
// Serveur web
server = promhttp_start_daemon(MHD_USE_SELECT_INTERNALLY
, 8099, NULL, NULL);
if (server == NULL)
{
printf("Impossible de démarrer le serveur HTTP\n");
exit(1);
}
}
void ProcessPrometheus()
{
// raising = 1 => front montant sur la sortie
if (_digital[OUT_PUMP_1].raising) {
std::array<const char*, 1> labels1 = { "1" };
prom_counter_inc(pm_pompe, labels1.data());
}
std::array<const char*, 1> labels1 = { "sortie" };
std::array<const char*, 1> labels2 = { "entree" };
prom_gauge_set(pm_debit, _digital[IN_FLOW_OUT].dvalue, labels1.data());
prom_gauge_set(pm_debit, _digital[IN_FLOW_IN].dvalue, labels2.data());
}

82
main.h Normal file
View File

@@ -0,0 +1,82 @@
void ConsoleInit();
void LireClavier(int ch);
void LireEntree();
void EvolutionGrafcet();
void Actions();
void RemiseZeroInput();
void ProcessInitKeyboard();
void ProcessInitIO();
void ProcessInitValues();
double ProcessMoteur(int i);
void ProcessException();
void Process();
void InitPrometheus();
void ProcessPrometheus();
double SimulConsoSinusoidale(long t);
double SimulConsoBrown(double valeur_precedente);
void AffichageWindow();
void Affichage(unsigned long t);
void AffichageGraphe(int y, int x, double value);
// KEYBOARD INPUT
#define IN_KEYBOARD_1 0
#define IN_KEYBOARD_2 1
#define IN_KEYBOARD_3 2
#define IN_KEYBOARD_4 3
#define IN_KEYBOARD_A 4
#define IN_KEYBOARD_X 5
#define IN_KEYBOARD_7 6
#define IN_KEYBOARD_8 7
#define IN_KEYBOARD_9 8
#define IN_KEYBOARD_0 9
// DIGITAL INPUT
#define IN_SENSOR_MIN 10
#define IN_SENSOR_LOW 11
#define IN_SENSOR_HIGH 12
#define IN_SENSOR_MAX 13
// ANALOG INPUT
#define IN_TANK_LEVEL 14
#define IN_FLOW_OUT 15
#define IN_FLOW_IN 16
#define IN_FLOW_DIF 17
#define IN_TANK_MIN 18
#define IN_TANK_MAX 19
#define IN_FLOW_CAP 20
#define IN_FLOW_1 21
#define IN_FLOW_2 22
#define IN_FLOW_3 23
#define IN_FLOW_4 24
// DIGITAL OUTPUT
#define OUT_PUMP_1 25
#define OUT_PUMP_2 26
#define OUT_PUMP_3 27
#define OUT_PUMP_4 28
#define OUT_DISPLAY_MODE 29
#define OUT_DISPLAY_GRAFCET 30
// ANALOG OUTPUT
#define OUT_LEVEL_MIN 31
#define OUT_LEVEL_LOW 32
#define OUT_LEVEL_HIGH 33
#define OUT_LEVEL_MAX 34
#define OUT_FLOW_PER_PUMP 35
#define OUT_FLOW_OUT_AMPLITUDE 36
#define OUT_BEEP 254
#define OUT_END 255