Compare commits

4 Commits
main ... dev

Author SHA1 Message Date
3ce3cecc34 JSON 2025-12-07 16:48:16 +01:00
70aa2687d0 ProcessMQTT 2025-12-07 16:04:44 +01:00
9d29b94a96 MQTT 2025-12-07 15:51:48 +01:00
8c8dc55db4 Exception 2025-12-07 15:51:07 +01:00
8 changed files with 813 additions and 23 deletions

View File

@@ -15,13 +15,25 @@ RUN set -eux; \
libmicrohttpd-dev \ libmicrohttpd-dev \
libcurl4-openssl-dev \ libcurl4-openssl-dev \
zlib1g-dev \ zlib1g-dev \
prometheus-cpp-dev prometheus-cpp-dev \
nlohmann-json3-dev
RUN set -eux; \ RUN set -eux; \
apt-get update; \ apt-get update; \
apt-get install -y \ apt-get install -y \
libpaho-mqtt-dev libpaho-mqtt-dev
RUN set -eux; \
git clone https://github.com/eclipse/paho.mqtt.cpp.git; \
cd paho.mqtt.cpp; \
git submodule init; \
git submodule update; \
mkdir build && cd build; \
cmake -DPAHO_WITH_MQTT_C=ON ..; \
cmake --build . --target install; \
ldconfig;
RUN set -eux; \ RUN set -eux; \
apt-get update; \ apt-get update; \
apt-get install -y \ apt-get install -y \

View File

@@ -52,9 +52,9 @@ typedef struct PinIO
unsigned long time; unsigned long time;
double duration; double duration;
unsigned int nb; // compteur d'activation unsigned int nb; // compteur d'activation
int memory; int memory; // valeur précédente
unsigned char raising; unsigned char raising; // front montant
unsigned char falling; unsigned char falling; // front descendant
} PinIO; } PinIO;
PinIO _digital[256]; PinIO _digital[256];
@@ -75,8 +75,6 @@ void pinMode(unsigned char p, unsigned char mode)
} }
/* KEYBOARD */ /* KEYBOARD */
typedef struct typedef struct
@@ -323,7 +321,7 @@ class MiseAEchelle
float minEntree; float minEntree;
float minSortie; float minSortie;
float maxEntree; float maxEntree;
float maxSortie; float maxSortie;
}; };
/* READ */ /* READ */
@@ -351,6 +349,8 @@ void digitalWrite(unsigned int p, int value)
// En panne ! // En panne !
if (!(_digital[p].mode & 0x01)) if (!(_digital[p].mode & 0x01))
{ {
_digital[p].ivalue = 0;
_digital[p].dvalue = 0.0;
return; return;
} }

View File

@@ -34,6 +34,7 @@ find_library(NCURSESW_LIB ncursesw REQUIRED)
find_library(RABBITMQ_LIB rabbitmq REQUIRED) find_library(RABBITMQ_LIB rabbitmq REQUIRED)
# Paho MQTT C client # Paho MQTT C client
find_library(PAHO_MQTTPP3_LIB paho-mqttpp3 REQUIRED)
find_library(PAHO_MQTT3C_LIB paho-mqtt3c REQUIRED) find_library(PAHO_MQTT3C_LIB paho-mqtt3c REQUIRED)
# ------------------------------- # -------------------------------
@@ -53,5 +54,6 @@ target_link_libraries(geii_exporter
${Z_LIB} ${Z_LIB}
${NCURSESW_LIB} ${NCURSESW_LIB}
${RABBITMQ_LIB} ${RABBITMQ_LIB}
${PAHO_MQTT3C_LIB} ${PAHO_MQTT3C_LIB} # dépendance C
${PAHO_MQTTPP3_LIB} # lib C++
) )

View File

@@ -8,7 +8,7 @@
#define TOPIC "test/topic" #define TOPIC "test/topic"
#define PAYLOAD "Hello MQTT" #define PAYLOAD "Hello MQTT"
#define QOS 1 #define QOS 1
#define TIMEOUT 10000L #define TIMEOUT_MQTT 10000L
int main() { int main() {
MQTTClient client; MQTTClient client;
@@ -33,7 +33,7 @@ int main() {
MQTTClient_deliveryToken token; MQTTClient_deliveryToken token;
MQTTClient_publishMessage(client, TOPIC, &pubmsg, &token); MQTTClient_publishMessage(client, TOPIC, &pubmsg, &token);
MQTTClient_waitForCompletion(client, token, TIMEOUT); MQTTClient_waitForCompletion(client, token, TIMEOUT_MQTT);
printf("Message publié !\n"); printf("Message publié !\n");
MQTTClient_disconnect(client, 10000); MQTTClient_disconnect(client, 10000);

163
main-mqtt2.cpp Normal file
View File

@@ -0,0 +1,163 @@
#include <iostream>
#include <string>
#include <thread>
#include <atomic>
#include <queue>
#include <mutex>
#include <condition_variable>
#include <csignal>
#include <chrono>
#include <cstring>
#include "mqtt/async_client.h"
using namespace std::chrono_literals;
/* Configuration MQTT */
const std::string ADDRESS = "tcp://rabbitmq:1883";
const std::string CLIENTID = "CppClientTP";
const std::string TOPIC = "geii/ordre/#";
const int QOS = 1;
const int CYCLE_MS = 100;
/* Queue thread-safe */
std::queue<std::string> orders_queue;
std::mutex queue_mtx;
std::string pop_all_and_get_last() {
std::lock_guard<std::mutex> lock(queue_mtx);
if (orders_queue.empty()) return "";
std::string last;
while (!orders_queue.empty()) {
last = orders_queue.front();
orders_queue.pop();
}
return last;
}
void push_order(const std::string &msg) {
std::lock_guard<std::mutex> lock(queue_mtx);
orders_queue.push(msg);
}
/* Etats machine */
enum class MachineState { STOPPED, RUNNING, ESTOP };
std::atomic<MachineState> machine_state(MachineState::STOPPED);
std::atomic<bool> estop_flag(false);
std::atomic<bool> running(true);
/* Fonctions d'application */
void apply_start() {
if(machine_state!=MachineState::RUNNING){
std::cout << "[MACHINE] -> START\n";
machine_state = MachineState::RUNNING;
}
}
void apply_stop() {
if(machine_state!=MachineState::STOPPED){
std::cout << "[MACHINE] -> STOP\n";
machine_state = MachineState::STOPPED;
}
}
void apply_estop() {
if(machine_state!=MachineState::ESTOP){
std::cout << "[MACHINE] -> E-STOP\n";
machine_state = MachineState::ESTOP;
}
}
/* Thread machine */
void machine_thread_fn() {
while(running) {
if(estop_flag) {
apply_estop();
std::this_thread::sleep_for(std::chrono::milliseconds(CYCLE_MS));
continue;
}
std::string last = pop_all_and_get_last();
if(!last.empty()) {
if(last=="START") apply_start();
else if(last=="STOP") apply_stop();
else std::cout << "[MACHINE] Commande inconnue: '" << last << "'\n";
}
std::this_thread::sleep_for(std::chrono::milliseconds(CYCLE_MS));
}
apply_stop();
}
/* Callback MQTT */
class callback : public virtual mqtt::callback {
public:
void message_arrived(mqtt::const_message_ptr msg) override {
std::string payload = msg->to_string();
if(payload == "E_STOP") {
estop_flag = true;
std::cout << "[MQTT] E-STOP reçu\n";
} else {
push_order(payload);
std::cout << "[MQTT] Reçu: '" << payload << "'\n";
}
}
};
/* SIGINT handler */
void sigint_handler(int) {
std::cout << "[MAIN] SIGINT reçu\n";
running = false;
}
int main() {
std::signal(SIGINT, sigint_handler);
/* MQTT async client */
mqtt::async_client client(ADDRESS, CLIENTID);
callback cb;
client.set_callback(cb);
mqtt::connect_options connOpts;
connOpts.set_clean_session(true);
connOpts.set_user_name("admin");
connOpts.set_password("ChangeMe");
try {
client.connect(connOpts)->wait();
client.start_consuming();
client.subscribe(TOPIC, QOS)->wait();
} catch (const mqtt::exception &exc) {
std::cerr << "Erreur MQTT: " << exc.what() << "\n";
return 1;
}
/* Threads */
std::thread th_machine(machine_thread_fn);
/* Boucle principale pour la réception */
while(running) {
std::string payload = R"({
"order": "STATUS",
"speed": 120,
"temperature": 36.1
})";
auto msg = mqtt::make_message("geii/telemetry", payload);
msg->set_qos(1);
client.publish(msg);
std::this_thread::sleep_for(100ms);
}
/* Arrêt */
try {
client.unsubscribe(TOPIC)->wait();
client.stop_consuming();
client.disconnect()->wait();
} catch(const mqtt::exception &exc){
std::cerr << "Erreur déconnexion MQTT: " << exc.what() << "\n";
}
th_machine.join();
std::cout << "[MAIN] Terminé\n";
return 0;
}

319
main.cpp
View File

@@ -6,13 +6,46 @@
#include "main.hpp" #include "main.hpp"
#include "AutomForArduino.cpp" #include "AutomForArduino.cpp"
#include <prometheus/counter.h>
#include <prometheus/gauge.h>
#include <prometheus/histogram.h>
#include <prometheus/registry.h>
#include <prometheus/exposer.h>
#include <curl/curl.h>
#include <string>
#include <iostream>
#include <thread>
#include <atomic>
#include <queue>
#include <mutex>
#include <condition_variable>
#include <csignal>
#include <chrono>
#include <cstring>
#undef timeout
#include "mqtt/async_client.h"
#include <nlohmann/json.hpp>
using namespace std::chrono_literals;
using json = nlohmann::json;
// Constantes de fonctionnement // Constantes de fonctionnement
#define LEVEL_MIN 2 #define LEVEL_MIN 2
#define FLOW_PER_PUMP 150 #define FLOW_PER_PUMP 150
/* Configuration MQTT */
const std::string ADDRESS = "tcp://rabbitmq:1883";
const std::string CLIENTID = "CppClientTP";
const std::string TOPIC = "geii/ordre/#";
const int QOS = 1;
const int CYCLE_MS = 100;
WINDOW *window; WINDOW *window;
int etape = 10; // Étape du grafcet : début Automatique int etape = 0; // Étape du grafcet : début Automatique
int bp_mode, bp_mode_fm; int bp_mode, bp_mode_fm;
unsigned short pompe1, pompe2, pompe3, pompe4; // bouton des pompes 0 (arrêt) / 1 (marche) unsigned short pompe1, pompe2, pompe3, pompe4; // bouton des pompes 0 (arrêt) / 1 (marche)
unsigned short pompe1_old, pompe2_old, pompe3_old, pompe4_old; unsigned short pompe1_old, pompe2_old, pompe3_old, pompe4_old;
@@ -20,18 +53,192 @@ unsigned short sensor_max, sensor_high, sensor_low, sensor_min;
float TankInitalValue = 7; float TankInitalValue = 7;
TemporisationRetardMontee tempo1(500); TemporisationRetardMontee tempo1(1500);
TemporisationRetardMontee tempo2(1000); TemporisationRetardMontee tempo2(3000);
TemporisationRetardMontee tempo3(1500); TemporisationRetardMontee tempo3(4000);
TemporisationRetardMontee tempo4(2000); TemporisationRetardMontee tempo4(6000);
// Prometheus // Prometheus
// ************************************************************ // ************************************************************
using namespace prometheus;
std::shared_ptr<Registry> registry;
Gauge *debit_entree = nullptr;
Gauge *debit_sortie = nullptr;
Gauge *debit_p1 = nullptr;
Gauge *debit_p2 = nullptr;
Gauge *debit_p3 = nullptr;
Gauge *debit_p4 = nullptr;
Gauge *tank_gauge = nullptr;
Counter *volume_p1 = nullptr;
Counter *volume_p2 = nullptr;
Counter *volume_p3 = nullptr;
Counter *volume_p4 = nullptr;
Histogram::BucketBoundaries buckets = {
2, 5, 6, 7, 8, 9, 9.5
};
Histogram *tank_histogram = nullptr;
// ************************************************************ // ************************************************************
/* Queue thread-safe */
std::queue<std::string> orders_queue;
std::mutex queue_mtx;
std::string pop_all_and_get_last() {
std::lock_guard<std::mutex> lock(queue_mtx);
if (orders_queue.empty()) return "";
std::string last;
while (!orders_queue.empty()) {
last = orders_queue.front();
orders_queue.pop();
}
return last;
}
void push_order(const std::string &msg) {
std::lock_guard<std::mutex> lock(queue_mtx);
orders_queue.push(msg);
}
/* Etats machine */
enum class MachineState { STOPPED, RUNNING, ESTOP };
std::atomic<MachineState> machine_state(MachineState::STOPPED);
std::atomic<bool> estop_flag(false);
std::atomic<bool> running(true);
/* Fonctions d'application */
void apply_start() {
if(machine_state!=MachineState::RUNNING){
std::cout << "[MACHINE] -> START\n";
machine_state = MachineState::RUNNING;
}
}
void apply_stop() {
if(machine_state!=MachineState::STOPPED){
std::cout << "[MACHINE] -> STOP\n";
machine_state = MachineState::STOPPED;
}
}
void apply_estop() {
if(machine_state!=MachineState::ESTOP){
std::cout << "[MACHINE] -> E-STOP\n";
machine_state = MachineState::ESTOP;
}
}
/* Thread machine */
void machine_thread_fn() {
while(running) {
if(estop_flag) {
apply_estop();
std::this_thread::sleep_for(std::chrono::milliseconds(CYCLE_MS));
continue;
}
pompe1 = 1;
std::string last = pop_all_and_get_last();
if(!last.empty()) {
if(last=="START") apply_start();
if(last=="P1") {
pompe1 = 1;
} else if(last=="P2") {
pompe2 = 1;
} else if(last=="P3") {
pompe3 = 1;
} else if(last=="P4") {
pompe4 = 1;
}
else if(last=="STOP") apply_stop();
else std::cout << "[MACHINE] Commande inconnue: '" << last << "'\n";
}
std::this_thread::sleep_for(std::chrono::milliseconds(CYCLE_MS));
}
apply_stop();
}
/* Callback MQTT */
class callback : public virtual mqtt::callback {
public:
void message_arrived(mqtt::const_message_ptr msg) override {
std::string payload = msg->to_string();
if(payload == "E_STOP") {
estop_flag = true;
std::cout << "[MQTT] E-STOP reçu\n";
} else if(payload == "P1") {
pompe2 = 1;
} else {
push_order(payload);
std::cout << "[MQTT] Reçu: '" << payload << "'\n";
}
}
};
/* SIGINT handler */
void sigint_handler(int) {
std::cout << "[MAIN] SIGINT reçu\n";
running = false;
}
void send_to_influx(double value) {
CURL* curl = curl_easy_init();
if (!curl) {
std::cerr << "Erreur CURL\n";
return;
}
// Line protocol
std::string line = "machine_cycle,machine=convoyeur1 value=" + std::to_string(value);
// Endpoint InfluxDB 2.x
std::string url =
"http://influxdb:8086/api/v2/write?org=geii&bucket=mesures&precision=s";
struct curl_slist* headers = nullptr;
headers = curl_slist_append(headers, "Authorization: Token MON_TOKEN");
headers = curl_slist_append(headers, "Content-Type: text/plain");
curl_easy_setopt(curl, CURLOPT_URL, url.c_str());
curl_easy_setopt(curl, CURLOPT_HTTPHEADER, headers);
curl_easy_setopt(curl, CURLOPT_POSTFIELDS, line.c_str());
CURLcode res = curl_easy_perform(curl);
if (res != CURLE_OK) {
std::cerr << "Erreur CURL: " << curl_easy_strerror(res) << "\n";
}
curl_slist_free_all(headers);
curl_easy_cleanup(curl);
}
int main() int main()
{ {
std::signal(SIGINT, sigint_handler);
/* MQTT async client */
mqtt::async_client client(ADDRESS, CLIENTID);
callback cb;
client.set_callback(cb);
mqtt::connect_options connOpts;
connOpts.set_clean_session(true);
connOpts.set_user_name("admin");
connOpts.set_password("ChangeMe");
try {
client.connect(connOpts)->wait();
client.start_consuming();
client.subscribe(TOPIC, QOS)->wait();
} catch (const mqtt::exception &exc) {
std::cerr << "Erreur MQTT: " << exc.what() << "\n";
return 1;
}
/* Initialisation */ /* Initialisation */
ConsoleInit(); ConsoleInit();
AffichageWindow(); AffichageWindow();
@@ -65,14 +272,26 @@ int main()
Actions(); Actions();
ProcessPrometheus(); ProcessPrometheus();
ProcessMQTT(&client);
ProcessException(); ProcessException();
usleep(100000); usleep(100000);
} }
endwin(); // Termine ncurses et rétablit le terminal endwin(); // Termine ncurses et rétablit le terminal
puts("Fin du programme");
/* Arrêt */
try {
client.unsubscribe(TOPIC)->wait();
client.stop_consuming();
client.disconnect()->wait();
} catch(const mqtt::exception &exc){
std::cerr << "Erreur déconnexion MQTT: " << exc.what() << "\n";
}
//th_machine.join();
std::cout << "[MAIN] Terminé\n";
return 0; return 0;
} }
@@ -437,10 +656,11 @@ double ProcessMoteur(int i)
void ProcessException() void ProcessException()
{ {
if (t_elapsed > 30) { if (t_elapsed > 60) {
_digital[OUT_PUMP_1].mode = 0; _digital[OUT_PUMP_1].mode = 0;
digitalWrite(OUT_PUMP_1, 0);
} else if (t_elapsed > 15) { } else if (t_elapsed > 15) {
_digital[IN_SENSOR_LOW].mode = 0; //_digital[IN_SENSOR_LOW].mode = 0;
} }
} }
@@ -454,8 +674,8 @@ void Process()
// ***** FLOW OUT // ***** FLOW OUT
if (_digital[IN_TANK_LEVEL].dvalue > 1.0) if (_digital[IN_TANK_LEVEL].dvalue > 1.0)
{ {
//_digital[IN_FLOW_OUT].dvalue = SimulConsoSinusoidale(t); _digital[IN_FLOW_OUT].dvalue = SimulConsoSinusoidale(t);
_digital[IN_FLOW_OUT].dvalue = SimulConsoBrown(_digital[IN_FLOW_OUT].dvalue); //_digital[IN_FLOW_OUT].dvalue = SimulConsoBrown(_digital[IN_FLOW_OUT].dvalue);
} }
else else
{ {
@@ -502,8 +722,7 @@ void Process()
unsigned char p = i + (OUT_PUMP_1 - IN_KEYBOARD_7); unsigned char p = i + (OUT_PUMP_1 - IN_KEYBOARD_7);
_digital[p].mode ^= 0x01; _digital[p].mode ^= 0x01;
if (!(_digital[p].mode & 0x01)) { if (!(_digital[p].mode & 0x01)) {
_digital[p].ivalue = 0; digitalWrite(p, 0);
_digital[p].dvalue = 0.0;
} }
} }
} }
@@ -770,11 +989,85 @@ void AffichageGraphe(int y, int x, double value)
*/ */
void InitPrometheus() void InitPrometheus()
{ {
static Exposer exposer{"0.0.0.0:8099"};
// Le registre central
registry = std::make_shared<Registry>();
exposer.RegisterCollectable(registry);
auto& gauge_volume = BuildGauge()
.Name("geii_volume")
.Help("Volume en m3")
.Register(*registry);
tank_gauge = &gauge_volume.Add({});
auto& gauge_debit = BuildGauge()
.Name("geii_debit")
.Help("Débit en l/s")
.Register(*registry);
debit_entree = &gauge_debit.Add({{"numero", "entree"}});
debit_sortie = &gauge_debit.Add({{"numero", "sortie"}});
debit_p1 = &gauge_debit.Add({{"numero", "1"}});
debit_p2 = &gauge_debit.Add({{"numero", "2"}});
debit_p3 = &gauge_debit.Add({{"numero", "3"}});
debit_p4 = &gauge_debit.Add({{"numero", "4"}});
auto& counter_debit = BuildCounter()
.Name("geii_litre")
.Help("Volume en l")
.Register(*registry);
volume_p1 = &counter_debit.Add({{"numero", "1"}});
volume_p2 = &counter_debit.Add({{"numero", "2"}});
volume_p3 = &counter_debit.Add({{"numero", "3"}});
volume_p4 = &counter_debit.Add({{"numero", "4"}});
auto& hist_volume = BuildHistogram()
.Name("geii_tank")
.Help("volume du reservoir en m3")
.Register(*registry);
tank_histogram = &hist_volume.Add({}, buckets);
}
void ProcessMQTT(mqtt::async_client* client)
{
json obj = {
{"entree", _digital[IN_FLOW_IN].dvalue},
{"sortie", _digital[IN_FLOW_OUT].dvalue},
{"p1", _digital[IN_FLOW_1].dvalue},
{"p2", _digital[IN_FLOW_2].dvalue},
{"p3", _digital[IN_FLOW_3].dvalue},
{"p4", _digital[IN_FLOW_4].dvalue},
{"level", _digital[IN_TANK_LEVEL].dvalue}
};
std::string payload = obj.dump();
auto msg = mqtt::make_message("geii/telemetry", payload);
msg->set_qos(1);
client->publish(msg);
} }
void ProcessPrometheus() void ProcessPrometheus()
{ {
tank_gauge->Set(_digital[IN_TANK_LEVEL].dvalue);
tank_histogram->Observe(_digital[IN_TANK_LEVEL].dvalue);
debit_entree->Set(_digital[IN_FLOW_IN].dvalue);
debit_sortie->Set(_digital[IN_FLOW_OUT].dvalue);
debit_p1->Set(_digital[IN_FLOW_1].dvalue);
debit_p2->Set(_digital[IN_FLOW_2].dvalue);
debit_p3->Set(_digital[IN_FLOW_3].dvalue);
debit_p4->Set(_digital[IN_FLOW_4].dvalue);
volume_p1->Increment(_digital[IN_FLOW_1].dvalue * dt);
volume_p2->Increment(_digital[IN_FLOW_2].dvalue * dt);
volume_p3->Increment(_digital[IN_FLOW_3].dvalue * dt);
volume_p4->Increment(_digital[IN_FLOW_4].dvalue * dt);
} }

View File

@@ -1,3 +1,6 @@
#undef timeout
#include "mqtt/async_client.h"
void ConsoleInit(); void ConsoleInit();
void LireClavier(int ch); void LireClavier(int ch);
@@ -16,6 +19,8 @@ void Process();
void InitPrometheus(); void InitPrometheus();
void ProcessPrometheus(); void ProcessPrometheus();
void ProcessMQTT(mqtt::async_client* client);
double SimulConsoSinusoidale(long t); double SimulConsoSinusoidale(long t);
double SimulConsoBrown(double valeur_precedente); double SimulConsoBrown(double valeur_precedente);

315
thread.c Normal file
View File

@@ -0,0 +1,315 @@
/*
* amqp_machine.c
*
* Exemple multithread AMQP (rabbitmq-c) + boucle machine déterministe.
*
* Compilation :
* gcc amqp_machine.c -lrabbitmq -lpthread -o amqp_machine
*
* Pré-requis :
* librabbitmq-dev (rabbitmq-c)
*
* Test de publication :
* rabbitmqadmin publish exchange=amq.default routing_key=geii_orders payload="START"
* rabbitmqadmin publish exchange=amq.default routing_key=geii_orders payload="STOP"
* rabbitmqadmin publish exchange=amq.default routing_key=geii_orders payload="E_STOP"
*
*/
/*
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include <pthread.h>
#include <stdatomic.h>
#include <amqp.h>
#include <amqp_tcp_socket.h>
// Connexion AMQP
#define HOST "localhost"
#define PORT 5672
#define USER "guest"
#define PASS "guest"
#define VHOST "/"
#define QUEUE "geii_orders"
// Boucle machine
#define CYCLE_MS 100
// Structures de la queue interne
typedef struct node {
char *msg;
struct node *next;
} node_t;
typedef struct {
node_t *head;
node_t *tail;
pthread_mutex_t mtx;
} queue_t;
static void queue_init(queue_t *q) {
q->head = q->tail = NULL;
pthread_mutex_init(&q->mtx, NULL);
}
static void queue_push(queue_t *q, const char *s) {
node_t *n = malloc(sizeof(node_t));
n->msg = strdup(s);
n->next = NULL;
pthread_mutex_lock(&q->mtx);
if (q->tail) q->tail->next = n;
q->tail = n;
if (!q->head) q->head = n;
pthread_mutex_unlock(&q->mtx);
}
static char *queue_pop_all_and_get_last(queue_t *q) {
// Vide la queue et retourne la dernière chaine (caller doit free()).
// Retourne NULL si queue vide.
pthread_mutex_lock(&q->mtx);
if (!q->head) {
pthread_mutex_unlock(&q->mtx);
return NULL;
}
char *last = NULL;
node_t *cur = q->head;
while (cur) {
if (last) free(last);
last = strdup(cur->msg);
node_t *tmp = cur;
cur = cur->next;
free(tmp->msg);
free(tmp);
}
q->head = q->tail = NULL;
pthread_mutex_unlock(&q->mtx);
return last;
}
static void queue_destroy(queue_t *q) {
pthread_mutex_lock(&q->mtx);
node_t *cur = q->head;
while (cur) {
node_t *tmp = cur;
cur = cur->next;
free(tmp->msg);
free(tmp);
}
q->head = q->tail = NULL;
pthread_mutex_unlock(&q->mtx);
pthread_mutex_destroy(&q->mtx);
}
// Etats machine
typedef enum {
STATE_STOPPED,
STATE_RUNNING,
STATE_ESTOP
} machine_state_t;
// Variables globales de contrôle
static atomic_int running = 1; // 0 = arrêt demandé
static atomic_int estop_flag = 0; // 1 = E-STOP actif
static queue_t orders_queue;
static machine_state_t machine_state = STATE_STOPPED;
// Fonctions "appliquer" (à remplacer par actions réelles)
static void apply_start(void) {
if (machine_state != STATE_RUNNING) {
printf("[MACHINE] -> START\n");
// TODO: démarrer moteurs / sorties
machine_state = STATE_RUNNING;
}
}
static void apply_stop(void) {
if (machine_state != STATE_STOPPED) {
printf("[MACHINE] -> STOP\n");
// TODO: couper moteurs / sorties
machine_state = STATE_STOPPED;
}
}
static void apply_estop(void) {
if (machine_state != STATE_ESTOP) {
printf("[MACHINE] -> E-STOP (arrêt d'urgence)\n");
// TODO: couper puissance, sécurité
machine_state = STATE_ESTOP;
}
}
// Thread machine : boucle déterministe
void *machine_thread_fn(void *arg) {
(void)arg;
const int cycle_us = CYCLE_MS * 1000;
while (atomic_load(&running)) {
// 1) Vérifier estop immédiat
if (atomic_load(&estop_flag)) {
apply_estop();
// On peut décider ici de vider la queue ou de la garder
// mais on ignore les autres commandes jusqu'à reset.
usleep(cycle_us);
continue;
}
// 2) Dépiler toute la file et ne garder que la dernière commande
char *last = queue_pop_all_and_get_last(&orders_queue);
if (last) {
// Normaliser message (trim)
if (strcmp(last, "START") == 0) {
apply_start();
} else if (strcmp(last, "STOP") == 0) {
apply_stop();
} else {
printf("[MACHINE] Commande inconnue reçue: '%s'\n", last);
}
free(last);
}
// 3) Exécuter la logique machine déterministe (boucle cycle)
// TODO: lire capteurs, asservissements, sorties...
usleep(cycle_us);
}
// Fin : safe stop
apply_stop();
return NULL;
}
// Thread AMQP : consomme messages et les place dans la queue
// Si message == "E_STOP" => set estop_flag immédiatement (ne pas mettre en queue)
void *amqp_thread_fn(void *arg) {
(void)arg;
amqp_connection_state_t conn = amqp_new_connection();
amqp_socket_t *socket = amqp_tcp_socket_new(conn);
if (!socket) {
fprintf(stderr, "[AMQP] Erreur: création socket\n");
atomic_store(&running, 0);
return NULL;
}
if (amqp_socket_open(socket, HOST, PORT)) {
fprintf(stderr, "[AMQP] Erreur: ouverture connexion %s:%d\n", HOST, PORT);
atomic_store(&running, 0);
return NULL;
}
amqp_rpc_reply_t rpc_reply = amqp_login(conn, VHOST, 0, 131072, 60,
AMQP_SASL_METHOD_PLAIN, USER, PASS);
if (rpc_reply.reply_type != AMQP_RESPONSE_NORMAL) {
fprintf(stderr, "[AMQP] Erreur login\n");
atomic_store(&running, 0);
return NULL;
}
amqp_channel_open(conn, 1);
amqp_get_rpc_reply(conn);
// Déclarer la queue (idempotent)
amqp_queue_declare(conn, 1, amqp_cstring_bytes(QUEUE),
0, 0, 0, 1, amqp_empty_table());
amqp_get_rpc_reply(conn);
// Démarrer la consommation
amqp_basic_consume(conn, 1,
amqp_cstring_bytes(QUEUE),
amqp_empty_bytes, // consumer tag auto
0, // no_local
1, // no_ack = 1 (auto-ack) ; ajuster selon besoin
0, // exclusive
amqp_empty_table());
amqp_get_rpc_reply(conn);
printf("[AMQP] En attente de messages sur '%s'...\n", QUEUE);
while (atomic_load(&running)) {
amqp_envelope_t envelope;
amqp_maybe_release_buffers(conn);
struct timeval timeout;
timeout.tv_sec = 0;
timeout.tv_usec = 500000; // 500 ms
rpc_reply = amqp_consume_message(conn, &envelope, &timeout, 0);
if (rpc_reply.reply_type == AMQP_RESPONSE_NORMAL) {
// Message reçu
size_t len = envelope.message.body.len;
char *body = malloc(len + 1);
memcpy(body, envelope.message.body.bytes, len);
body[len] = '\0';
printf("[AMQP] Reçu: '%s'\n", body);
if (strcmp(body, "E_STOP") == 0) {
// Priorité absolue : traiter immédiatement
atomic_store(&estop_flag, 1);
printf("[AMQP] E-STOP reçu : flag estop activé\n");
free(body);
} else {
// Push dans la queue pour traitement au prochain cycle
queue_push(&orders_queue, body);
free(body);
}
amqp_destroy_envelope(&envelope);
} else if (rpc_reply.reply_type == AMQP_RESPONSE_LIBRARY_EXCEPTION &&
rpc_reply.library_error == AMQP_STATUS_TIMEOUT) {
// timeout - pas de message
// rien
} else {
// autre erreur - tentatives de reconnexion possibles
fprintf(stderr, "[AMQP] Erreur consume (reconnexion nécessaire?)\n");
sleep(1);
// Ici on pourrait tenter de reconnecter proprement ; pour cet exemple,
// on continue la boucle et laisse l'admin redémarrer si nécessaire
}
}
// Fermeture
amqp_channel_close(conn, 1, AMQP_REPLY_SUCCESS);
amqp_connection_close(conn, AMQP_REPLY_SUCCESS);
amqp_destroy_connection(conn);
return NULL;
}
// Handler SIGINT pour arrêt propre
static void sigint_handler(int signum) {
(void)signum;
printf("[MAIN] SIGINT reçu : arrêt\n");
atomic_store(&running, 0);
}
int main(int argc, char **argv) {
(void)argc; (void)argv;
signal(SIGINT, sigint_handler);
queue_init(&orders_queue);
pthread_t th_amqp, th_machine;
if (pthread_create(&th_amqp, NULL, amqp_thread_fn, NULL) != 0) {
perror("pthread_create amqp");
return 1;
}
if (pthread_create(&th_machine, NULL, machine_thread_fn, NULL) != 0) {
perror("pthread_create machine");
atomic_store(&running, 0);
pthread_join(th_amqp, NULL);
return 1;
}
// Attendre threads
pthread_join(th_amqp, NULL);
pthread_join(th_machine, NULL);
queue_destroy(&orders_queue);
printf("[MAIN] Terminé.\n");
return 0;
}
*/