
Cahier des charges
technique

Cognet Matthéo / Erik Barba
15/10/2025

1

Erik Becerra Barba

● Rôle: Responsable de la documentation, intégration frontend et
appui technique backend

● Responsabilités:
○ Rédaction technique de cahiers des charges et

présentations
○ Participation aux contrôleurs Symfony
○ Élaboration de la documentation fonctionnelle et

technique
○ Définition des interfaces utilisateur et validation UX
○ Intégration des modules externes (calendrier)
○ Contribution aux tests fonctionnels et à la traçabilité

des livrables

Présentation d'équipe
Matthéo Cognet

● Rôle: Développeur principal backend et architecte de la base de
données

● Responsabilités:
○ Développement backend avec Symfony, Doctrine ORM et

API REST
○ Modélisation relationnelle évolutive avec PostgreSQL
○ Conteneurisation avec Docker et configuration serveur
○ Mise en place de tests unitaires et gestion des branches

Git
○ Conception de l’architecture technique.
○ Implémentation des modules de gestion (adhésions,

abonnements, livraisons)
○ Intégration des modules externes (cartographie)
○ Suivi des sprints et revue de code

2

1. Introduction

Dans les années 2000, un logiciel dit de « gestion des adhérents » a été conçu par un directeur de Jardin de
Cocagne sur une base Microsoft Access. Ses fonctionnalités principales sont la gestion des adhérents, des
abonnements aux paniers et des règlements associés, l'édition de feuilles de route pour la préparation et la livraison
des paniers. Un export de données vers un logiciel de comptabilité est possible. Cet outil était encore utilisé en juin
2016 par 65% des Jardins de Cocagne. Il répond assez bien aux besoins de base en termes de gestion
d'abonnement aux paniers, mais les formules commerciales et le contexte ont fortement évolué, nécessitant à
présent une modernisation de l'outil (internet, automatisation des processus, ouverture des modes de ventes).

A ce jour 75% des Jardins de Cocagne ont manifesté un besoin urgent de développer un nouvel outil de gestion
commerciale.

a. Rappel du contexte

3

Développer une solution numérique moderne, évolutive et sécurisée permettant aux Jardins
de Cocagne de gérer efficacement leurs activités commerciales: adhésions, abonnements,
livraisons, paiements et itinéraires.

Le système devra être accessible via le web, s’intégrer avec des outils externes
(cartographie, calendrier, comptabilité) et respecter les obligations légales en matière de
protection des données.

b. Objectif du projet

4

Exemples :

[Utilisateur] <-> [Frontoffice Web] <-> [API Symfony] <->
[Base de données PostgreSQL]

[Gestionnaire] <-> [Backoffice Web] <-> [API Symfony]
<-> [Base de données PostgreSQL]

[Modules externes : Carte, Calendrier, Itinéraire] <->
[API Symfony]

2. Architecture générale du système

a. Schéma global de l’application
Schéma en trois couches :

● Frontoffice (interface client/adhérent)

● Backoffice (interface gestionnaire)

● Base de données PostgreSQL

● API REST (pour communication entre front et back, et
interconnexion avec d’autres outils)

● Serveur d’hébergement (cloud ou dédié, sécurisé)

● Modules externes : Carte interactive, calendrier, gestion des
itinéraires

5

Couche présentation :

● Interfaces web responsives (Twig,
Bootstrap, JS)

● Accès sécurisé (authentification,
gestion des rôles)

b. Architecture en couches

Couche logique métier :

● Symfony (contrôleurs, services,
entités)

● Gestion des règles métier
(abonnements, livraisons, adhésions,
commandes)

Couche accès aux données :

● Doctrine ORM pour PostgreSQL
● Modèle relationnel modulaire et

évolutif

6

Hébergement

● Un serveur de base de données
PostgreSQL avec réplication et
sauvegardes automatisées.

● Un stockage sécurisé pour les fichiers
et journaux.

b. Hébergement sécurité modularité

API & Modules externes

● Séparation entre frontend, backend, API et base de données
● Conteneurisation avec docker
● Intégration progressive de modules externes (cartographie, calendrier, itinéraires)

via API REST.

Sécurité

● Chiffrement de données sensible
en transit (TLS 1.2+).

● Protection contre les vulnérabilités
courantes (injections SQL, XSS,
CSRF).

7

3. Choix des technologies
Langage de développement Base de données

Cadriciel principal

Gestion de dépendances
et versionning

Frontend

Conteneurisation

8

Produits et Composition

● produit_type: Catégories de produits.
● produit: Produit.

○ Relation:structuire_id,
produit_type_id

● produit_composition: Produits
composés.

○ Relation: produit_id,
composant_id

4. Modélisation de la base de données
Structure

● structure: Définit l’entité principale.

Saisons et Calendrier

● saison: Périodes de livraison.
○ Relation: Structure

● semain_non_livrable: Semaines
sans livraison.

○ Relation: Saison
● jour_ferie: Jours Fériés.

○ Relation: Saisons
● jour_ferie_decalage: Décalages liés

aux jours fériés.
○ Relation: jour_ferie,

tournee_livraisons

Logistique de Livraison

● tournee_livraison: Tournées de
livraison.

○ Relation: structure_id
● tournee_depot: Association entre

tournée et point de dépôt.
○ Relation: structure_id

● point_depot: Points de dépôt.
○ Relation: structure_id

● point_depot_jour: Jour d’ouverture
des points de dépôt.

○ Relation: point_depo_idt

Clients et Adhesíons

● client: informations sur le client.
○ Relation: structure_id

● adhesion_type: Types d’adhésion.
○ Relation: structure_id

● adhesion: Adhésion active
○ Relation: client_id,

adhesion_type_id

9

Abonnements et Commandes

● abonnement_frequence: Fréquence et statut
de l’abonnement.

● abonnement: Abonnement actif.
○ Relation: client_id, produit_id, saison_id,

point_depot_id, frequence_id

4. Modélisation de la base de données

Livraison

● livraison_status: Statut de la livraison.
● livraison: Enregistrement de la livraison.

○ Relation: abonnement_id,
cammande_id, point_depot_id,
livraison_statut_id

10

5. Organisation des Développements

Branche main : version stable et prête
pour mise en production.

Branche develop : intégration des
fonctionnalités validées en cours de cycle.

Branches feature/ : développement de
nouvelles fonctionnalités isolées.

Branches hotfix/ : corrections urgentes
directement appliquées sur main.

Approche Agile Scrum

Itérations courtes avec objectifs définis
(sprints de 2 à 3 semaines).

Revue de code systématique avant
intégration.

Tests unitaires et fonctionnels intégrés au
cycle.

Trello pour gestion des tâches et suivi de
backlog.

Tableaux Kanban pour visualiser
l’avancement (To Do, In Progress, Done).

Stratégie de gestion des
branches Git

Méthodologie de travail Outils de suivi

11

6. Support des Applications

Compatibilité Multi-plateforme Sécurité des accès

12

Sécurité et accès
Authentification par identifiant/mot de passe
chiffré (hashage, salage)

Gestion des rôles (administrateur, contributeur,
utilisateur simple) avec droits différenciés

Sessions sécurisées avec expiration et
renouvellement de jeton

Connexions chiffrées (HTTPS/TLS 1.2+) pour
toutes les communications

Protection native contre attaques XSS, CSRF et
injections SQL via Symfony

Journalisation des accès et tentatives de
connexion pour suivi de sécurité

13

7. Solutions pour la Carte et l'Itinéraire

14

OpenRouteService (ORS) Google Directions API

Licence Open source Propriétaire – Payant selon
usage

Types de
profils

Voiture, vélo, piéton, fauteuil
roulant, transport adapté

Voiture, vélo, piéton,
transport public

Analyse
spatiale

Oui – matrices d’accessibilité,
géocodage direct/inverse

Limité – géocodage séparé,
pas d’analyse spatiale

Personnalisati
on

Très flexible, paramètres
détaillés, formats GeoJSON

Moins flexible, formats et
options prédéfinis

Quota gratuit 2 000 requêtes/jour (clé
gratuite)

500 requêtes/jour (clé
gratuite)

hébergement Hébergement européen –
conformité RGPD

Hébergement Google – hors
UE

Intégration
avec Leaflet

Native via plugins et formats
compatibles

Possible mais nécessite
adaptation

Documentatio
n

Complète, open source Très complète,
développeurs commerciau

Leaflet.js Google Maps JavaScript
API

Licence Open source Propriétaire – Payant selon
usage

Personnalisa
tion

Très flexible avec plugins et
styles CSS

Personnalisation limitée aux
options Google

Dépendance
externe

Faible – fonctionne avec tuiles
OSM ou locales

Forte – dépendance aux
serveurs Google

Fonctionnalit
és

Cartes, marqueurs, couches,
popups

Cartes, itinéraires,
géolocalisation, Street View

API
d’itinéraire

Intégration via
OpenRouteService ou OSRM

Native avec Directions API

Performance
mobile

Optimisé pour web et mobile Très performant, mais plus
lourd

Quota et
limites

Aucun quota imposé Limites de requêtes par
jour/mois

RGPD et
hébergement

Compatible avec
hébergement local sécurisé

Données hébergées par
Google

7. Solutions pour la Carte et l'Itinéraire

Utilisation de Leaflet.js carte open source web

Openrouteservice est une API permettant de calculer des itinéraires

15

Chargement et affichage de tuiles
cartographiques (OSM, cartes
personnalisées).

Gestion des couches (layers),
marqueurs, polygones, popups.

Contrôles interactifs (zoom,
géolocalisation, échelle).

Extensible via plugins (heatmaps,
clusters, dessin).

Fonctionnalités
principales

Contraintes
techniques

Nécessite un fournisseur de tuiles compatible (ex. OpenStreetMap).

Optimisé pour web et mobile, limité en fonctionnalités natives 3D.

Usage dans le
projet

Base cartographique interactive.

Interface utilisateur pour affichage des itinéraires générés par l’API
de routage. 16

Calcul d’itinéraires multi-profils
(voiture, piéton, vélo, transports
adaptés).

Isochrones (zones atteignables en X
minutes ou kilomètres).

Géocodage direct et inverse.

Analyse spatiale (accessibilité,
matrices d’itinéraires).

Fonctionnalités
principales

Contraintes
techniques

Requiert clé d’API (quota selon plan choisi).

Limitation du nombre de requêtes par minute/jour.

Temps de réponse dépendant de la complexité de la requête.

Usage dans le
projet

Fourniture des données de navigation.

Génération d’itinéraires intégrés dans Leaflet.js.
17

8. Gestion des Calendrier

Usage dans le projet
Intégré dans Twig

API REST pour lecture/écriture des événements

Accès restreint par rôles

Affichage des livraisons et événements.

Création et modification d'évènements.

Synchronisation bidirectionnelle avec le backend..

Notifications automatiques.

FullCalendrier.js

18

9. Protection des données et RGPD
Collecte et conservation :

Données limitées au strict nécessaire (adhérents, abonnements,
paiements).

Durée de conservation définie selon obligations légales.

Suppression ou anonymisation automatique après expiration.

19

Droits des utilisateurs :

Accès, rectification, suppression et portabilité des données.

Interface utilisateur pour gérer les consentements.

Procédure documentée pour exercer ses droits.

20

Transparence :

Politique de confidentialité claire
et accessible.

Information explicite lors de la
collecte des données (finalité,
usage).

 Traçabilité et conformité :

Journalisation des opérations sur
les données personnelles.

Registre interne des traitements.

Évaluation d’impact (DPIA) si
traitement sensible.

Responsabilité organisationnelle :

Référent RGPD désigné.

Processus de gestion des incidents et violations de données.

21

10. Qualité de code et tests
Normes et bonnes pratiques :

● Respect des standards PSR pour
PHP/Symfony.

● Revue de code systématique avant
intégration.

● Documentation du code et des API.

22

11. Schémas et illustration

Subscription et Livraison

Client → Frontoffice → API Symfony → Base de données
 └──> Crée/modifie abonnement
 └──> Sélectionne point de dépôt
 └──> Choisit fréquence et produit

API Symfony → Génère planning de livraison
 → Enregistrer dans DB
 → Envoie confirmation au client

Jour de livraison:
Backoffice → API → Vérifie statut
 → Génère feuille de route
 → Affiche itinéraire (ORS + Leaflet)

23

12. Conclusion

Ce document définit les spécifications techniques pour le développement dúne nouvelle plateforme
de gestion commerciale adaptée aux besoins actuels des Jardins de Cocagne, La solution
proposée repose sur les technologies modernes, garantit la sécurité des données, facilite
l’utilisation des outils externes et encourage une gestion agile et collaborative. Sa mise en œuvre
permettra d’améliorer l’efficacité et l'expérience des utilisateurs.

24

