Cahier des charges

technique
Tom NIRRENGARTEN - Romain DESERT

15 Octobre 2025

Contexte et rappel du sujet

Depuis 20 ans, les Jardins de Cocagne utilisent un logiciel basé sur Microsoft
Access. Ce dernier permet notamment la gestion des adhérents, la gestions des
abonnements et des reglements, ainsi que le suivis et la livraison des paniers.
Bien qu’il soit encore majoritairement utilisé, les trois quarts des Jardins de
Cocagne souhaitent qu'un nouvel outil remplace I'existant pour correspondre au
mieux aux nouveaux besoins.

Ainsi, nous avons pour mission la réalisation d’'une nouvelle solution moderne
pouvant évoluer pour toujours mieux répondre aux nouveaux besoins dans la
gestion de leurs activités. L'outil prendra la forme d’'un site web sécurise, qui
respectera les diverses obligations legales dans la protection des données.

Notre equipe

Romain DESERT : Développeur Fullstack, connaissances sur les bases de

données, la conteneurisation et le versionning
- Tom NIRRENGARTEN : Développeur Fullstack, connaissances sur les

services AWS et le Cloud-Computing

Notre organisation

- Notre code sera publié sur un repository Github

- L'onglets “Projets” de Github sera utilisé pour gérer nos sprint

- Nous utiliserons un systeme de branches ainsi que de pull request stricte
pour eviter les problemes

- Chaque Pull Request devra étre accepté a ['unanimité par I'équipe

- Nous mettrons en place des test unitaires durant le processus de
développement. Les pull request ne pourront étre validé par I'équipe que si
les tests passent.

- L'onglet Issue sera mis a contribution pour noter tout bug découvert, et un
bug devrait étre résolu dans une branche dédie a ce dernier

Application principale

- Nous avons un backend et un frontend qui sont
reliée a un K8s

- Le serveur backend utilise des systeme de
stockage (base de donnée et s3)

- Nous pouvons également appliquer des
extensions sur le frontend et backend du serveur

- L’architecture Kubernetes a été choisie pour sa
haute robustesse et sa facilité de déploiement
(tout est fait en YML), celle-ci correspond mieux
gu’une architecture serveur classique car elle
permet d’isoler les conteneurs afin de ne pas
avoir de risque associée au module utilisateurs.

Backend

Echo

High performance, extensible, minimalist Go web framework

- Notre application sera écrite en Go en utilisant
le framework Echo

- Go est un langage récent est puissant gagnant
de plus en plus de popularité

- Il a été créé par Google pour gérer des
demande forte en utilisant le moins de
performance.

- Il a été choisi pour sa haute performance et ses
faibles demande de ressource tout en ayant
une syntaxe facile. Beaucoup d’autres langages é\
existe mais peu arrive a un tel niveau de [
performance ce qui a poussé notre choix.

Backend

- Afin d’avoir un site modulable tout en gardant un niveau de
sécurité nous avons décidé d’utiliser des extensions en
WASM (Web Assembly). Celle-ci peuvent étre développée en
n'importe quelle langues (pour aider les développeurs) et
exporter des fonctions appelée par Go (via par exemple
Wazero).

- Les WASM sont fait pour étre isolée comme un site web ce
qui permet un haut niveau de protection pour les
fonctionnalités basiques

- Les fonctionnalités avancée requiérent tout de méme des
modifications en Go

- Nous avons choisi cette technologie plutdt que des
modifications entiérement sur le code source go pour sa
modularité ainsi que son isolement (certaines fonction sont
exportées mais le reste du systeme tourne dans une
sandbox)

Stockage des données

Amazon S3 — Storage Classes

- Notre priorité est la fiabilité de nos données, @ @ @ @ @ @
celle-ci ne doivent pas étre perdu et doivent avoir B T vt
des copies fréquentes. R

- Nous avons décideé de partir sur I'écosysteme m se o mme e
cloud AWS car c’est celui que nous connaissons e : e e
le mieux. Celui-ci permet egalement un systeme ety NSy sk ey b
efficace d’archive ainsi que des prix bas. Un S
systeme de stockage basique ne nous aurait pas aws
permis un tel niveau de sécurité des données et
d'archivage.

- Pour le stockage de fichier brut (blob storage)
nous allons utiliser un systeme S3 avec un
archivage des données afin d’avoir des copies
réguliere des données.

Stockage des données

- Pour le stockage de nos données logicielle nous allons utiliser
DynamoDB pour sa scalabilité horizontale et son approche de
sauvegarde automatique off-site.

- Celle-ci posséde également un support pour les données GPS
via le plugin “Geo Library for Amazon DynamoDB”

- Celui-ci peut automatiquement augmenter en capacité tout en
respectant le modele “pay as you use” (payer uniquement pour Am azon DynamO DB
le stockage que vous utilisez)

- Pour nous alerter de toutes anomalies dans nos requéte nous
allons utiliser AWS CloudWatch

- Nous avons choisi DynamoDB pour son prix tres faible et son

modéle “pay as you use”, modele non applicable dans des ‘
instances RDS PostgreSQL qui sont beaucoup plus cher. Nous

avons décidé de stocker nos données dans le cloud pour la ~~
méme problématique que S3. CloudWatch s'inscrit dans Amazon Cloudwatch

I'écosystéme AWS ce qui a poussé notre choix.

Notification utilisateur

- Pour communiquer avec les utilisateur (Email
et SMS) nous allons utiliser AWS SES et SNS

- Ces services nous permette d’envoyer des
notification/mails via REST (ou SMTP pour les

mails) tout en n'ayant pas de probleme de
réputation avec les piscines d’IP gérée par
AWS

- Nous avons utilisé ces services car les
IP/Numéro de téléphones change fréquemment
ce qui permet de ne pas tomber dans les
SPAM des clients, d’autre service comme
SendInBlue propose aussi ces services mais a
des prix beaucoup plus élevée.

AWS SES AWS SNS

Evolution AWS

AWS via le biai d'IAM permet de faire des
groupes et des comptes utilisateurs

Cela permet de faire des groupes et créer des
utilisateurs pour les donner au responsables
de l'organisation

Cette solution a été choisi car elle est intégrée
de base dans AWS et qu’il N’y a pas vraiment
d’alternatives

% Awsav

Paiement

Pour effectuer les paiement en ligne nous
utiliserons Stripe.

Cette solution est trés commune mais prend
malheureusement des commissions, ceci peut étre
problématique avec le client.

Cette solution a été choisie pour son efficacité et
son modeéle de paiement alléchant, d’autant plus
stripe propose également des terminaux de
paiement électronique pour aider les distributeur
de panier a collecter les payement physique s'il le
faut. Square aurait également été possible
cependant les prix sont plus cher

stripe

Authentification

- Pour avoir un systeme sécurisé supportant 'oauth2 et un
systeme de role nous allons utiliser Keycloak

- Celui ci permet aux administrateurs de gérer les rbles des
utilisateurs ainsi que leur groupe sur une interface
graphique simple

- Cette solution OpenSource permet d’avoir un moyen
simple, sécurisé et centralisé de s’occuper des connexion
et des permissions utilisateur

- Nous avons choisi cette suite plutét que AuthO car le
systéme de rdle est tres efficace et que nous avions déja
de I'expérience avec ce logiciel.

Frontend

- Pour le frontend nous allons utiliser le framework js Vue avec
I'outil de build Vite

- Vue est un framework populaire permettant de faire du
frontend avec des composants. Celui-ci est hautement
modulaire et autorise l'utilisateur a facilement I'éditer.

- Vite nous permet de build le site de maniére statique afin de
pouvoir le distribuer de maniére rapide avec un serveur
comme NGINX.

- Pour créer des pages simples nous utiliserons CKEditor afin
de manipuler le HTML de maniére graphique

- Nous avons choisi Vue pour sa communaute trés large ainsi
que sa simplicité d’utilisation comparée a d’autres framework
comme ReactJS

Frontend

Nous allons utiliser Vue Router pour les routes,
celle-ci seront gérée entierement cété client afin
de réduire le temps de chargement du site

Pour implémenter un systéme de state et de
gerer les variables en temps réel nous allons
utiliser Pinia, celle-ci étant la solution la plus
commune pour gerer ce probleme

Nous avons choisi Vue Router et Pinia car
ceux-ci sont les librairies les plus communément
utiliser pour leur fonctions

Vue
Router

Cartographie

- Pour une carte simple nous allons utiliser leaflet
avec son integration VueJS. Celui ci permet de
poser simplement des points sur une carte
Openstreetmaps

- Pour les tournées nous allons utiliser 'API Circuit
pour nous faire des routes optimisée en passant
par tous les points nécessaire pour ensuite les
exporter vers des applis de GPS

- Leaflet a été choisi pour son caractere .

OpenSource et sa grande utilisation et Circuit a €
choisi pour sa simplicité d’utilisation et nos
expériences personnels

Icks

el ——

nnnnnnnnnnn

on St

Milano Morning Royte

rrrrrrrrrr

‘‘‘‘‘‘‘‘‘‘‘‘

ol gle

nnnnnnnnnnnnnnnnnnn

Pine st

Circuit

oz ...

:::::::

Calendrier

Pour I'affichage des calendriers nous
utiliserons la librairie EventCalendar de
vkurko pour son aspect graphique simple
pour l'utilisateur

Pour I'import/export des calendriers
personnel pour simplifier I'utilisation nous
passeront par des fichiers ICAL. Ceux-ci
peuvent souvent étre charge par URL ce qui
aide a avoir un calendrier en temps réel sur
I'application favorite de l'utilisateur

Hosting

Nous avons décidé de partir sur des conteneurs
afin d’isoler toutes les applications, celle-ci
pouvant étre personnalisé il ne suffit que d'un
utilisateur pour faire planter tous les sites, cette
approche permet d’isoler les organisation et de
les faire marcher indépendamment

Pour gérer tout nos conteneurs nous allons
utiliser Kubernetes afin d’avoir une maniére
centralisée de contréler tous nos déploiement
ainsi que pour reduire le temps de panne au
maximum

kubennetes

& & & & &

docker docker docker docker docker

Hosting

- Pour héberger nos conteneurs nous allons utiliser EKS de AWS, il s’agit d’un

runtime docker permettant automatiquement s’agrandir horizontalement sur aWS
des instances EC2 (VPS) ou en Serverless afin d’avoir toujours assez de
puissance disponible. N

- Pour ne pas ouvrir trop de machine engendrant un fort coup on utilisera AWS Elastic ubernetes @
Billing and Cost management Service [EKS]

- Lors d'un ajout d'un nouveau site par un administrateur un nouveau
déploiement sera créé avec des parameétres d'environnement personnalisé et
sera envoyer grace au SDK Kubernetes (Celui ci étant écrit en Go)

- Les modules seront stockés sur le bucket S3 afin de pouvoir les gérer

facilement ainsi qu’'une configuration basique JSON du site afin de pouvoir =1
récupérer tout les fichiers en cas de désastre

- EKS a été choisi car il s’agit d’'une des solutions de déploiement Kubernetes
les plus utilise. D’autres outils AWS qui seront abordés plus tard requiérent

celui-ci pour fonctionner

Tests unitaire

Go posséde un systéme de test unitaire pré-intégré
dans le code, ce qui rend sa realisation simple.

Une pipeline Github fera des tests automatique avant
chaque Merge Request pour s’assurer de la fiabilité
du code

Vu que des modules utilisateur seront présent des
tests seront également fait pour chaque nouveau
déploiement, les résultats de celui-ci seront envoyeés
au contréleur kubernetes qui va rollback ou non les
modifications pour n’avoir aucun downtime

Kubernetes Cluster

Mise a jour automatique

- Lors de chaque merge vers la branche main un build docker de I'image de base
sera fait sur les actions github

- Ceux-ci seront publie sur un repository Sonatype Nexus OSS privée afin de ne r Sonatype
pas divulguer les images clients v R

- Oninstallera FluxCD afin d’automatiquement mettre a jour les images sur Y hexus repOSItory
Kubernetes et d’avoir constamment la derniére version sans intervention
manuelle.

- Kubernetes effectuant les mise a jour sur un duplicat de I'application et des essais
sur les plugins étant exécutée nous n’auront aucun downtime

- FluxCD est une des solution de CI/CD les plus répandus pour pousser une image
sur un repo kubernetes automatiquement, Keel aurait pu etre utilise a la place
mais son approche est moins robuste que FluxCD (FIuxCD contacte le repository
alors que pour Keel le repository contacte Keel)

- Sonatype Nexus est un logiciel de gestion de paquets reconnu et utilisé par
beaucoup (principalement pour le Java), celui-ci permet une gestion avancée des
images et des permissions utilisateur pour accéder a ces images. Nous utiliserons
la version OpenSource.

Acces utilisateur

apps.example.com

- Finalement, afin de rendre le site accessible au utilisateur - ==
on crée un Ingress sur notre cluster K8S afin de le laisser
router ses connections.

- Nous allons utiliser AWS ALB afin d’avoir une bonne
intégration avec nos services Amazon

- Afin de gérer facilement les domaines nous allons utiliser
AWS Route 53 pour son intégration facile avec ALB.
Celui-ci nous permettra de configurer rapidement nos
enregistrements DNS

- Pour fluidifier I'expérience utilisateur nous allons utiliser
AWS cloudfront pour mettre en cache les fichiers statique: a

- Ces solutions ont été utilise pour leur bonne intégration e
avec EKS ainsi que leur fiabilité m \@

AWS resources
where website is
hosted

Client requests for
www.geeksforgeeks.org

Seécurité

Pour nous assurer d'éviter les attaques DDOS
et les payloads malicieux nous allons utiliser
AWS WAF.

Celui-ci permet d'intercepter les requétes et de
les bloquer si elles paraissent malicieuse et/ou
bloquer I'lP

Celui-ci a été choisi pour sa fiabilité et sa facilité
d’utilisation. ModSecurity aurait aussi pu étre
utilise avec un Ingress Nginx, cependant
celui-ci ne bloque pas les DDOS

AWS cloud

Documentation

Pour notre documentation nous allons utiliser Read
the Docs qui est une méthode simple et rapide de
publier sa documentation sur un site web

Pour la documentation des endpoints API un
Swagger OpenAPI sera fait afin d’aider le debogage
Ceux-ci ont été utilisés pour sa popularité et sa
facilité de mise en place

Read
the
Docs

Obligations légales

En tant que site web professionnel, nous sommes soumis a des obligation legal
Francaise et Européen :

Les mentions légales doivent clairement identifier I'entreprise.
Les Conditions Générales de Ventes (CGV) doivent informer les clients sur

leurs droits et obligations.
La collecte de données doit étre réalisée de maniére transparente et surtout,

doit étre consenti par l'utilisateur. (RGPD)
La résiliation d’'un abonnement/contrat doit désormais pouvoir étre réalisé par
voie électronique, et non uniquement par voie postal.

