
Cahier des charges 
technique

Tom NIRRENGARTEN - Romain DESERT

15 Octobre 2025



Contexte et rappel du sujet

Depuis 20 ans, les Jardins de Cocagne utilisent un logiciel basé sur Microsoft 
Access. Ce dernier permet notamment la gestion des adhérents, la gestions des 
abonnements et des règlements, ainsi que le suivis et la livraison des paniers. 
Bien qu’il soit encore majoritairement utilisé, les trois quarts des Jardins de 
Cocagne souhaitent qu’un nouvel outil remplace l’existant pour correspondre au 
mieux aux nouveaux besoins.

Ainsi, nous avons pour mission la réalisation d’une nouvelle solution moderne 
pouvant évoluer pour toujours mieux répondre aux nouveaux besoins dans la 
gestion de leurs activités. L’outil prendra la forme d’un site web sécurisé, qui 
respectera les diverses obligations légales dans la protection des données. 



Notre équipe

- Romain DESERT : Développeur Fullstack, connaissances sur les bases de 
données, la conteneurisation et le versionning

- Tom NIRRENGARTEN : Développeur Fullstack, connaissances sur les 
services AWS et le Cloud-Computing



Notre organisation

- Notre code sera publié sur un repository Github
- L’onglets “Projets” de Github sera utilisé pour gérer nos sprint
- Nous utiliserons un système de branches ainsi que de pull request stricte 

pour éviter les problèmes
- Chaque Pull Request devra être accepté à l'unanimité par l’équipe
- Nous mettrons en place des test unitaires durant le processus de 

développement. Les pull request ne pourront être validé par l’équipe que si 
les tests passent.

- L’onglet Issue sera mis à contribution pour noter tout bug découvert, et un 
bug devrait être résolu dans une branche dédié à ce dernier



Application principale

- Nous avons un backend et un frontend qui sont 
reliée à un K8s 

- Le serveur backend utilise des système de 
stockage (base de donnée et s3)

- Nous pouvons également appliquer des 
extensions sur le frontend et backend du serveur 

- L’architecture Kubernetes a été choisie pour sa 
haute robustesse et sa facilité de déploiement 
(tout est fait en YML), celle-ci correspond mieux 
qu’une architecture serveur classique car elle 
permet d’isoler les conteneurs afin de ne pas 
avoir de risque associée au module utilisateurs.



Backend

- Notre application sera écrite en Go en utilisant 
le framework Echo

- Go est un langage récent est puissant gagnant 
de plus en plus de popularité

- Il a été créé par Google pour gérer des 
demande forte en utilisant le moins de 
performance.

- Il a été choisi pour sa haute performance et ses 
faibles demande de ressource tout en ayant 
une syntaxe facile. Beaucoup d’autres langages 
existe mais peu arrive à un tel niveau de 
performance ce qui a poussé notre choix. 



Backend

- Afin d’avoir un site modulable tout en gardant un niveau de 
sécurité nous avons décidé d’utiliser des extensions en 
WASM (Web Assembly). Celle-ci peuvent être développée en 
n’importe quelle langues (pour aider les développeurs) et 
exporter des fonctions appelée par Go (via par exemple 
Wazero).

- Les WASM sont fait pour être isolée comme un site web ce 
qui permet un haut niveau de protection pour les 
fonctionnalités basiques

- Les fonctionnalités avancée requièrent tout de même des 
modifications en Go

- Nous avons choisi cette technologie plutôt que des 
modifications entièrement sur le code source go pour sa 
modularité ainsi que son isolement (certaines fonction sont 
exportées mais le reste du système tourne dans une 
sandbox)



Stockage des données 

- Notre priorité est la fiabilité de nos données, 
celle-ci ne doivent pas être perdu et doivent avoir 
des copies fréquentes.

- Nous avons décidé de partir sur l'écosystème 
cloud AWS car c’est celui que nous connaissons 
le mieux. Celui-ci permet egalement un systeme 
efficace d’archive ainsi que des prix bas. Un 
système de stockage basique ne nous aurait pas 
permis un tel niveau de sécurité des données et 
d'archivage.

- Pour le stockage de fichier brut (blob storage) 
nous allons utiliser un système S3 avec un 
archivage des données afin d’avoir des copies 
régulière des données.



Stockage des données 

- Pour le stockage de nos données logicielle nous allons utiliser 
DynamoDB pour sa scalabilité horizontale et son approche de 
sauvegarde automatique off-site.

- Celle-ci possède également un support pour les données GPS 
via le plugin “Geo Library for Amazon DynamoDB”

- Celui-ci peut automatiquement augmenter en capacité tout en 
respectant le modèle “pay as you use” (payer uniquement pour 
le stockage que vous utilisez)

- Pour nous alerter de toutes anomalies dans nos requête nous 
allons utiliser AWS CloudWatch

- Nous avons choisi DynamoDB pour son prix très faible et son 
modèle “pay as you use”, modele non applicable dans des 
instances RDS PostgreSQL qui sont beaucoup plus cher. Nous 
avons décidé de stocker nos données dans le cloud pour la 
même problématique que S3. CloudWatch s'inscrit dans 
l'écosystème AWS ce qui a poussé notre choix.



Notification utilisateur

- Pour communiquer avec les utilisateur (Email 
et SMS) nous allons utiliser AWS SES et SNS

- Ces services nous permette d’envoyer des 
notification/mails via REST (ou SMTP pour les 
mails) tout en n’ayant pas de problème de 
réputation avec les piscines d’IP gérée par 
AWS 

- Nous avons utilisé ces services car les 
IP/Numéro de téléphones change fréquemment 
ce qui permet de ne pas tomber dans les 
SPAM des clients, d’autre service comme 
SendInBlue propose aussi ces services mais a 
des prix beaucoup plus élevée.



Evolution AWS

- AWS via le biai d’IAM permet de faire des 
groupes et des comptes utilisateurs 

- Cela permet de faire des groupes et créer des 
utilisateurs pour les donner au responsables 
de l’organisation

- Cette solution a été choisi car elle est intégrée 
de base dans AWS et qu’il n’y a pas vraiment 
d’alternatives



Paiement

- Pour effectuer les paiement en ligne nous 
utiliserons Stripe.

- Cette solution est très commune mais prend 
malheureusement des commissions, ceci peut être 
problématique avec le client.

- Cette solution a été choisie pour son efficacité et 
son modèle de paiement alléchant, d’autant plus 
stripe propose également des terminaux de 
paiement électronique pour aider les distributeur 
de panier à collecter les payement physique s'il le 
faut. Square aurait également été possible 
cependant les prix sont plus cher 



Authentification

- Pour avoir un système sécurisé supportant l’oauth2 et un 
système de rôle nous allons utiliser Keycloak

- Celui ci permet aux administrateurs de gérer les rôles des 
utilisateurs ainsi que leur groupe sur une interface 
graphique simple

- Cette solution OpenSource permet d’avoir un moyen 
simple, sécurisé et centralisé de s’occuper des connexions 
et des permissions utilisateur

- Nous avons choisi cette suite plutôt que Auth0 car le 
système de rôle est très efficace et que nous avions déjà 
de l'expérience avec ce logiciel.



Frontend

- Pour le frontend nous allons utiliser le framework js Vue avec 
l’outil de build Vite

- Vue est un framework populaire permettant de faire du 
frontend avec des composants. Celui-ci est hautement 
modulaire et autorise l'utilisateur a facilement l'éditer.

- Vite nous permet de build le site de manière statique afin de 
pouvoir le distribuer de manière rapide avec un serveur 
comme NGINX.

- Pour créer des pages simples nous utiliserons CKEditor afin 
de manipuler le HTML de manière graphique

- Nous avons choisi Vue pour sa communauté très large ainsi 
que sa simplicité d’utilisation comparée à d’autres framework 
comme ReactJS



Frontend

- Nous allons utiliser Vue Router pour les routes, 
celle-ci seront gérée entièrement côté client afin 
de réduire le temps de chargement du site

- Pour implémenter un système de state et de 
gérer les variables en temps réel nous allons 
utiliser Pinia, celle-ci étant la solution la plus 
commune pour gérer ce problème 

- Nous avons choisi Vue Router et Pinia car 
ceux-ci sont les librairies les plus communément 
utiliser pour leur fonctions 



Cartographie

- Pour une carte simple nous allons utiliser leaflet 
avec son integration VueJS. Celui ci permet de 
poser simplement des points sur une carte 
Openstreetmaps

- Pour les tournées nous allons utiliser l’API Circuit 
pour nous faire des routes optimisée en passant 
par tous les points nécessaire pour ensuite les 
exporter vers des applis de GPS 

- Leaflet a été choisi pour son caractère 
OpenSource et sa grande utilisation et Circuit a été 
choisi pour sa simplicité d’utilisation et nos 
expériences personnels



Calendrier

- Pour l’affichage des calendriers nous 
utiliserons la librairie EventCalendar de 
vkurko pour son aspect graphique simple 
pour l’utilisateur

- Pour l’import/export des calendriers 
personnel pour simplifier l’utilisation nous 
passeront par des fichiers ICAL. Ceux-ci 
peuvent souvent être chargé par URL ce qui 
aide à avoir un calendrier en temps réel sur 
l’application favorite de l’utilisateur 



Hosting

- Nous avons décidé de partir sur des conteneurs 
afin d’isoler toutes les applications, celle-ci 
pouvant être personnalisé il ne suffit que d’un 
utilisateur pour faire planter tous les sites, cette 
approche permet d’isoler les organisation et de 
les faire marcher indépendamment 

- Pour gérer tout nos conteneurs nous allons 
utiliser Kubernetes afin d’avoir une manière 
centralisée de contrôler tous nos déploiement 
ainsi que pour réduire le temps de panne au 
maximum



Hosting

- Pour héberger nos conteneurs nous allons utiliser EKS de AWS, il s’agit d’un 
runtime docker permettant automatiquement s’agrandir horizontalement sur 
des instances EC2 (VPS) ou en Serverless afin d’avoir toujours assez de 
puissance disponible.

- Pour ne pas ouvrir trop de machine engendrant un fort coup on utilisera AWS 
Billing and Cost management

- Lors d’un ajout d’un nouveau site par un administrateur un nouveau 
déploiement sera créé avec des paramètres d'environnement personnalisé et 
sera envoyer grâce au SDK Kubernetes (Celui ci étant écrit en Go)

- Les modules seront stockés sur le bucket S3 afin de pouvoir les gérer 
facilement ainsi qu’une configuration basique JSON du site afin de pouvoir 
récupérer tout les fichiers en cas de désastre

- EKS a été choisi car il s’agit d’une des solutions de déploiement Kubernetes 
les plus utilise. D’autres outils AWS qui seront abordés plus tard requièrent 
celui-ci pour fonctionner



Tests unitaire

- Go possède un système de test unitaire pré-intégré 
dans le code, ce qui rend sa réalisation simple.

- Une pipeline Github fera des tests automatique avant 
chaque Merge Request pour s’assurer de la fiabilité 
du code

- Vu que des modules utilisateur seront présent des 
tests seront également fait pour chaque nouveau 
déploiement, les résultats de celui-ci seront envoyés 
au contrôleur kubernetes qui va rollback ou non les 
modifications pour n’avoir aucun downtime



Mise à jour automatique

- Lors de chaque merge vers la branche main un build docker de l’image de base 
sera fait sur les actions github

- Ceux-ci seront publie sur un repository Sonatype Nexus OSS privée afin de ne 
pas divulguer les images clients

- On installera FluxCD afin d’automatiquement mettre à jour les images sur 
Kubernetes et d’avoir constamment la dernière version sans intervention 
manuelle.

- Kubernetes effectuant les mise a jour sur un duplicat de l’application et des essais 
sur les plugins étant exécutée nous n’auront aucun downtime 

- FluxCD est une des solution de CI/CD les plus répandus pour pousser une image 
sur un repo kubernetes automatiquement, Keel aurait pu etre utilise a la place 
mais son approche est moins robuste que FluxCD (FluxCD contacte le repository 
alors que pour Keel le repository contacte Keel)

- Sonatype Nexus est un logiciel de gestion de paquets reconnu et utilisé par 
beaucoup (principalement pour le Java), celui-ci permet une gestion avancée des 
images et des permissions utilisateur pour accéder à ces images. Nous utiliserons 
la version OpenSource.



Accès utilisateur

- Finalement, afin de rendre le site accessible au utilisateur 
on crée un Ingress sur notre cluster K8S afin de le laisser 
router ses connections.

- Nous allons utiliser AWS ALB afin d’avoir une bonne 
intégration avec nos services Amazon

- Afin de gérer facilement les domaines nous allons utiliser 
AWS Route 53 pour son intégration facile avec ALB. 
Celui-ci nous permettra de configurer rapidement nos 
enregistrements DNS 

- Pour fluidifier l'expérience utilisateur nous allons utiliser 
AWS cloudfront pour mettre en cache les fichiers statiques

- Ces solutions ont été utilise pour leur bonne intégration 
avec EKS ainsi que leur fiabilité



Sécurité

- Pour nous assurer d'éviter les attaques DDOS 
et les payloads malicieux nous allons utiliser 
AWS WAF.

- Celui-ci permet d'intercepter les requêtes et de 
les bloquer si elles paraissent malicieuse et/ou 
bloquer l’IP

- Celui-ci a été choisi pour sa fiabilité et sa facilité 
d’utilisation. ModSecurity aurait aussi pu être 
utilise avec un Ingress Nginx, cependant 
celui-ci ne bloque pas les DDOS



Documentation

- Pour notre documentation nous allons utiliser Read 
the Docs qui est une méthode simple et rapide de 
publier sa documentation sur un site web

- Pour la documentation des endpoints API un 
Swagger OpenAPI sera fait afin d’aider le debogage

- Ceux-ci ont été utilisés pour sa popularité et sa 
facilité de mise en place 



Obligations légales

En tant que site web professionnel, nous sommes soumis à des obligation légal 
Française et Européen :

- Les mentions légales doivent clairement identifier l’entreprise.
- Les Conditions Générales de Ventes (CGV) doivent informer les clients sur 

leurs droits et obligations.
- La collecte de données doit être réalisée de manière transparente et surtout, 

doit être consenti par l’utilisateur. (RGPD)
- La résiliation d’un abonnement/contrat doit désormais pouvoir être réalisé par 

voie électronique, et non uniquement par voie postal.


