
Cahier Des
Charges
Technique

LES JARDINS DE COCAGNE

Téo VINCENT | Ewan GAILLIEGUE

1
15/10/2025

CONTEXTE
ET
OBJECTIFS

Contexte du projet
• Les jardins de cocagne veulent un site web moderne et intuitif
• valoriser la production locale et faciliter le lien avec les adhérents
• Le site doit proposer une expérience interactive et pratique (infos,

adhésion, suivi).

Objectifs techniques
• Créer un site dynamique et responsif (React / Express / PostgreSQL).
• Intégrer une carte interactive pour localiser les points de distribution.
• Mettre en place un itinéraire dynamique (API de cartographie type

Leaflet ou Google Maps).
• Ajouter un calendrier de livraison consultable et mis à jour en ligne.
• Garantir une interface simple pour la gestion interne (adhérents,

paniers, tournées).

Contraintes principales
• Nouvelles technologies modernes
• Délais limités ⇒ solutions stables, open-source et faciles à maintenir.
• Respect du cahier des charges

2

Présentation
de l’équipe

3

Composition de
l’équipe

Ewan GAILLIEGUE

Etudiant en 3ème année de BUT INFO,
Il est le lead développeur back-end,
imagine la base de données et
participe au développement front-
end.

Téo VINCENT
Etudiant en 3ème année de BUT
INFO, Il est le lead développeur
front-end, imagine le maquettage
et participe au développement
back-end

Architecture
Globale

Contrôleur

ModèleVue

Requête http

1

Demande des
données

2

3
Obtention des
données

4

5
Réponse HTML

4

Front-end

Technologie retenue : React

• React.js est une bibliothèque JavaScript open source développée par Meta.
• Elle permet de construire des interfaces utilisateur dynamiques et réactives à partir de

composants réutilisables.
• Utilisée dans de nombreux projets web modernes (Airbnb, Netflix, Spotify).

Pourquoi ce choix?
• Permet une interface fluide et interactive pour les adhérents et administrateurs (paniers,

calendrier, carte).
• Facilite la modularité : chaque section (adhésion, dépôt, panier) est un composant isolé.
• Compatible avec React-Leaflet pour la carte interactive et Axios pour la communication

avec l’API Express.js.
• Parfaitement intégrable dans une architecture MVC côté front-end. Large communauté

et documentation — un atout pour un projet d’étude à petite équipe

5

Performance

Réutilisabilité

Interopérabilité

Écosystème
riche

Support
communautaire

Rendu rapide grâce au Virtual
DOM

Composants modulaires,
maintenance facilitée

Compatible avec la plupart
des API et frameworks

Nombreuses librairies (React
Router, Formik, Zustand…)

Forte base d’utilisateurs et
mises à jour régulières

Avantages Inconvénients

Courbe
d’apprentissage

Mises à jour
fréquentes

Non-framework
complet

Syntaxe JSX et logique des
hooks à maîtriser

Nécessite une veille
technique régulière

Nécessite d’ajouter des outils
externes (routing, state
management)

Back-end

Technologie retenue : Node.Js + Express.Js

• Environnement JavaScript côté serveur, léger et performant.
• Express.js : framework minimaliste facilitant la création d’API REST.
• Structure organisée selon le modèle MVC (Contrôleurs – Modèles – Routes).

Pourquoi ce choix?

• Permet une communication fluide entre le front (React) et la base de données.
• Grande flexibilité et compatibilité avec de nombreux modules npm.
• Idéal pour des projets web modernes et évolutifs.

backend/

├── server.js

├── routes/

│ └── livraisonRoutes.js

├── controllers/

│ └── livraisonController.js

├── models/

│ └── livraisonModel.js

└── config/

 └── db.js

Exemple de structure serveur

6

Base de
Données

Base de données relationnelle – PostgreSQL

PostgreSQL est le système de gestion de base de données relationnelle choisi pour le
projet Les Jardins de Cocagne.
Il offre stabilité, performance et une grande flexibilité pour la modélisation de
données complexes (adhésions, dépôts, livraisons, paniers, facturation…).

Fiabilité et sécurité

Transactions ACID, gestion fine des
permissions, sauvegardes intégrées.
Adapté à la gestion des données
sensibles (adhérents, paiements).

Performance et
évolutivité

Capable de gérer des milliers de lignes
sans perte de performance.
Indexation avancée, vues matérialisées
et requêtes complexes optimisées.

Richesse fonctionnelle

• Types personnalisés (ENUM, UUID) pour une
structure claire

• Fonctions et déclencheurs (triggers) pour
automatiser les règles de gestion

• Extensions utiles
• uuid-ossp pour les identifiants uniques
• pgcrypto pour la sécurité
• PostGIS (optionnel) pour la géolocalisation

des dépôts

7

Structure
de la
Base de
Données

Structure – Base de données relationnelle

Objectifs
o Organiser de manière cohérente toutes les informations du site : adhérents, adhésions,

paniers, dépôts, livraisons, production, facturation.
o Garantir la cohérence des données et faciliter les échanges avec l’API Express.js.

Domaine Tables principales Rôle

Adhésions foyer, adherent, adhesion Gérer les familles, adhérents et
abonnements

Dépôts depot, creneau,

foyer_depot_pref

Localiser les points de retrait et leurs
créneaux

Paniers & livraisons livraison, panier,

contenu_panier

Planifier et suivre les distributions

Production parcelle, culture, semis,

recolte, produit

Suivre la production maraîchère

Facturation facture, paiement Gérer les paiements et les factures
des adhérents

Bénévolat (optionnel) volunteer_task,

volunteer_signup

Gérer les chantiers participatifs

Relations
clé

• Un foyer peut avoir plusieurs adhésions (1—N)
• Une adhésion génère plusieurs paniers sur une saison
• Un panier est associé à un dépôt et à un contenu panier
• Les produits proviennent de cultures liées à des parcelles
• Une adhésion donne lieu à une ou plusieurs factures / paiements

8

Déploiement

Déploiement – Docker

Objectif du
déploiement

• Garantir un environnement stable, reproductible et portable
• Simplifier la mise en ligne du site des Jardins de Cocagne
• Assurer une cohérence entre développement et production

Choix
technologique:
Docker

• Conteneurisation du backend (Express.js), du frontend (React) et de la
base (PostgreSQL)

• Isolation des services : chaque composant tourne dans son propre
conteneur

• Compatible avec tous les environnements (local, cloud, serveur Linux)

Avantages clés

• Rapidité de déploiement
• Un seul fichier docker-compose.yml pour tout lancer

• Stabilité et reproductibilité
• Zéro conflit de dépendances (Node, Postgres…)

• Maintenance simplifiée
• Mises à jour par simple rebuild de l’image

Environnement
cible

• Serveur Linux (Ubuntu) ou hébergement Docker Cloud
• Services : web -> Front-end React ; api -> back-end Express.js ;

 db -> PostgreSQL

Développeur Docker build Serveur cloud Conteneurs isolés Utilisateurs9

Sécurité et
contrainte
technique

Sécurité et
contrainte
technique

• Authentification sécurisée via JWT (JSON Web Token) pour les utilisateurs et
administrateurs

• Gestion des rôles : adhérent, salarié, administrateur
• Mots de passe hachés avec bcrypt avant stockage dans la base PostgreSQL

Sessions protégées par HTTPS et tokens stockés de manière sécurisée
• Possibilité d’extension future : connexion via OAuth2 (Google, FranceConnect)

Sauvegarde et
intégrité des
données

• Sauvegardes quotidiennes automatisées de la base PostgreSQL
(pg_dump)

• Conservation des sauvegardes sur 20 jours
• Données persistées dans des volumes Docker (ou base cloud managée)
• Contrôle d’intégrité : clés primaires/étrangères, contraintes de cohérence
• Politique de rétention et anonymisation conforme au RGPD

Standards web
et bonnes
pratiques

• Respect des normes OWASP Top 10 (injection, XSS, CSRF, etc.)
• Communication chiffrée (HTTPS) pour toutes les interactions client–

serveur
• Validation des entrées côté client et serveur Structure du code

conforme au modèle MVC (séparation des responsabilités)
• Tests automatisés (unitaires & API) intégrés au pipeline CI/CD

Contraintes
techniques

• PostgreSQL pour la base, Express.js pour l’API, React pour le front
• Suivi de performance et alertes via outils de monitoring (Grafana,

UptimeRobot)
• Politique de mise à jour mensuelle (packages, dépendances, images

Docker)
10

Récapitulatif
Technique

Domaine Technologie retenue Rôle principale

Front-end React.js Interface utilisateur dynamique,
composant réutilisables, design
responsive

Back-end Express.js (Node.js) API REST, gestion des routes,
authentification et logique métier

Base de données PostgreSQL Stockage relationnel, gestion des
adhésions, paniers, livraisons,
production

Carte & itinéraires Leaflet.js + API
OpenStreetMap

Affichage des dépôts, itinéraires de
livraison

Déploiement &
hébergement

Docker Conteneurisation, cohérence entre
dev et prod, hébergement cloud

CI/CD GitHub Actions Tests, build et déploiements
automatisés

Sauvegarde &
Monitoring

Sauvegardes automatisées,
supervision du service

Authentification &
sécurité

JWT + bcrypt + HTTPS Protection des accès, mots de passe
hachés, communication sécurisée

Points
forts

• Architecture claire (MVC) → séparation Front / Back / DB
• Technologies de développement modernes et bien documentés
• Maintenance facilitée grâce à Docker et CI/CD
• Scalabilité possible (microservices, cloud)
• Expérience utilisateur fluide et interactive via React + carte dynamique

11

Organisation
et Gestion de
projet

12

Méthode agile – Scrum

Approche Agile choisie pour sa flexibilité et son adaptation aux besoins du client.
Découpage du projet en sprints courts (1 à 2 semaines).

À chaque sprint :
➢ objectifs précis,
➢ livrables fonctionnels,
➢ revue et ajustement avec le client.

Avantages :
• meilleure réactivité face aux

changements,
• communication continue dans

l’équipe,
• intégration progressive des

fonctionnalités (adhésion, carte,
calendrier…).

Organisation
et Gestion de
projet

13

Outils – Planification et Gestion

GanttProject

Git / GitHub

TRELLO

Discord

Figma /
Canva

Google Drive

- Suivi des tâches par
sprint (tableau Kanban)

- Simple, collaboratif, visuel

- Planification temporelle
globale avec un diagramme
de Gantt

- Vue chronologique claire,
dépendances visibles

- Gestion de versions, suivi
du code, CI/CD

- Collaboration, traçabilité,
intégration avec Trello

- Communication et
synchronisation rapide

- Travail d’équipe fluide,
décisions en temps réel

- Maquettage visuel et
wireframes

- Interface intuitive,
collaboration en direct

- Documentation et
centralisation des fichiers

- Partage rapide, historique
des modifications

Cahier Des
Charges
Technique

LES JARDINS DE COCAGNE

Téo VINCENT | Ewan GAILLIEGUE

14
15/10/2025

	Diapositive 1
	Diapositive 2
	Diapositive 3
	Diapositive 4
	Diapositive 5
	Diapositive 6
	Diapositive 7
	Diapositive 8
	Diapositive 9
	Diapositive 10
	Diapositive 11
	Diapositive 12
	Diapositive 13
	Diapositive 14

