
CAHIER DES CHARGES
TECHNIQUE

 SAÉ 5 - Développement avancé

C h a y i m a a M E H R A Z / Z a y n a b R I F I

1 5 / 1 0 / 2 0 2 5

SOMMAIRE

6 - Hébergement / Déploiement
7 - Environnement de test
8 - Carte / Itinéraire / Calendrier
9 - Sécurité

1 - Organisation de l’équipe
2 - Besoins client
3 - Architecture générale
4 - Technologies utilisées
5 - Outils de développement

2

Méthodologie : Scrum (agile) Répartition des rôles

Sprint de X semaines Frontend (Blade, Tailwind, JS), UX/UI

Réunions régulières (daily / point d’avancement) Backend Laravel (logique métier, tournées, calendrier)

Attribution des tâches via GitHub Base de données (SQLite, migrations, modèles)

Revues de code (pull requests) Carte / itinéraire (API), intégration et tests

1 - ORGANISATION DE L’ÉQUIPE

3

MEHRAZ

RIFI

Gérer les adhérents
L’inscription, la connexion et la

gestion des abonnements.

Planifier les dates de livraison
Définir un calendrier de livraisons avec

des fréquences et exceptions.

Offrir un tunnel de commande simple
côté adhérent

L’adhérent choisit un abonnement et
un point de dépôt puis valide.

Organiser les livraisons
Créer les tournées, choisir les dépôts

et afficher l’itinéraire sur une carte.

Gérer les paniers et le stock
Répartir le stock de légumes dans

différents types de paniers.

Interface claire et responsive
Application facile à utiliser sur

ordinateur et mobile.

2 - BESOINS CLIENT

4

Architecture MVC (Laravel)

3 - ARCHITECTURE GÉNÉRALE

Frontend

Base de données

Utilisateur → Front → Backend → DB

Backend

Environnement

Blade + Tailwind

SQLite

Laravel (Contrôleurs, Modèles, Routes)

Docker

5

Laravel
Framework PHP MVC pour

structurer, sécuriser et faciliter le
développement.

Tailwind CSS
Framework utilitaire pour le design

sans écrire de CSS manuel.

JavaScript
Gestion des interactions dynamiques

(carte, itinéraire, calendrier…).

Bootstrap
 Bibliothèque de composants prêts à

l’emploi pour une interface responsive.

SQLite
Base de données légère,

fichier unique, simple à utiliser.

4 - TECHNOLOGIES
UTILISÉES

6

Docker
Conteneurs pour

exécuter l’app dans
un environnement identique.

Github
Plateforme en ligne pour héberger le

projet, collaborer et suivre
l’avancement.

VS Code
Éditeur de code léger et

personnalisable avec extensions
(Laravel, Tailwind, Git…)

5 - OUTILS DE
DÉVELOPPEMENT

7

6 - HÉBERGEMENT / DÉPLOIEMENT

Serveur web : Apache

→ Compatible avec Laravel
(PHP)
→ Gestion des routes et du
.htaccess

1

Conteneurisation : Docker

→ Environnement
reproductible
→ Configuration identique dev /
prod

Base de données : SQLite

→ Stockée sur le serveur
→ Sauvegardes régulières

2 3

8

Serveur local Apache (via Laravel / Docker)

Base de données SQLite dédiée aux tests

Tests automatisés avec PHPUnit (intégré à Laravel)

Données fictives via seeders / factories

Tests manuels via Postman / navigateur

1

2

3

4

5

9

7 - ENVIRONNEMENT DE TEST

Carte
API utilisée : (Google Maps ou

Leaflet + OpenStreetMap)
Affichage des points de retrait

Interaction : clic pour infos
Intégration via JavaScript dans

Blade

Itinéraire
API de calcul d’itinéraire (ex :

Directions API, Leaflet Routing
Machine)

Position utilisateur → point de retrait
Affichage graphique sur la carte

Mise à jour dynamique

Calendrier
Outil : FullCalendar (JS) ou calendrier

personnalisé
Affichage des dates de livraison
Interaction (détails d’une date)

Synchronisation avec la base de
données

8 - CARTE / ITINÉRAIRE /
CALENDRIER

10

Authentification & rôles
→ Accès limité selon le type d’utilisateur
(admin / adhérent).
Validation des données
→ Contrôle des champs côté backend et
frontend.
Protection des formulaires
→ CSRF, mots de passe hashés.
Sauvegarde des données (SQLite)
→ Backups réguliers pour éviter la perte
d’informations.

9 - SÉCURITÉ

11

