
Cahier des charges technique

Présentation des choix techniques et de l'architecture pour notre 

SAÉ.

HERRY Matteo - HERRY Elwyn 15/10/25
1

S5.A.01 Développement avancé



Problématique

1

Description du besoin réel

gestion des livraisons, 
dépôts, tournées, 

adhérents

2

Contraintes

Utilisateurs peu qualifiés, 
interface simple, 

maintenance légère, open-
source

3

Indicateurs de succès

fiabilité, accessibilité, 
rapidité, évolutivité

2



Objectifs et Résultats Clés

1

Création d’une application

Créer, en équipe, une application 

en suivant une démarche itérative 

ou incrémentale.

2

Développement 
Ergonomique

Utiliser des technologies 

avancées et s'inscrire dans une 

démarche d'amélioration continue.

3

Plateforme Technique 
Robuste

Déployer une architecture 

dockerisée moderne, basée sur 

Node.js et MySQL.

3



Identification des Besoins et Contraintes

1
Besoin de Cartographie Précise et calcul d’itinéraires efficaces

Nécessité d'intégrer une solution de cartographie open source (Leaflet + OpenStreetMap) pour visualiser les arrêts et les dépôts.

Exigence d'un moteur de routage rapide et fiable (OSRM) pour calculer les chemins optimaux.

2
Utilisation d’une API, en lien avec une BDD et un serveur

L'application devra utiliser des API complexes, interroger une base de données mais également 
s’appuyer sur un serveur pour la gestion des requêtes et des données

3
Architecture Modulaire

Le système doit être facilement maintenable et évolutif grâce à une conteneurisation complète (Docker).

4
Sécurité des Données

Toutes les informations (données clients, dépôts, tournées) doivent être stockées dans un environnement MySQL sécurisé.

4



Architecture Globale : Le Modèle Docker Conteneurisé

L'application est structurée autour de quatre conteneurs Docker indépendants, garantissant isolation et portabilité.

Web Server (Nginx)

Point d'entrée unique, gère les requêtes statiques (Front-end) et agit comme proxy inverse 

vers l'API.

Application (Node.js/Express)

Le cœur de la logique métier, responsable de l'API REST et des interactions avec la base de 

données.

Base de Données (MySQL)

Stockage persistant et sécurisé de toutes les données opérationnelles (dépôts, tournées, 

arrêts).

Administration (phpMyAdmin)

Interface graphique pour la gestion et le suivi simplifiés de la base de données (pour les 

développeurs et administrateurs).

5



Flux de Requêtes : De l'Utilisateur à la Base de Données

Chaque requête suit un chemin précis pour assurer la sécurité et le bon traitement des données.

MySQLAPI ExpressNginxClient

Client

Envoie une requête (comme charger une tournée) via le navigateur.

Nginx

Reçoit la requête et la transmet à l'API Express.

Express API

Traite la logique métier et interroge la base de données MySQL.

MySQL

Fournit les données demandées (ex: liste des dépôts).

6



La Stack Logicielle : Technologies Clés

Nous avons sélectionné des technologies éprouvées et performantes, majoritairement Open Source.

• Front-end : HTML5, Bootstrap 5 (pour la réactivité), 

Leaflet.js (Cartographie).

• Back-end : Node.js et framework Express (API REST 

rapide et légère).

• Base de Données : MySQL (robustesse et performance 

pour les données structurées).

Le choix de Node.js permet une unification du 

langage (JavaScript) sur le client et le serveur, 

simplifiant le développement.

7



Modèle de données et init

1

Scripts d’initiation

Exemples de scripts : 01-
depots.sql, 02-tournees.sql

2

Jeu de données initial

5 tournées, liste de dépôts

3

Encodage

utf8mb4

8



API REST : Les Routes CRUD Principales

L'API Express expose des points d'accès clairs pour gérer les ressources de l'application.

Ressource Méthode Description

/api/tournees GET Récupérer la liste de toutes les tournées (avec filtres optionnels).

/api/tournees POST Créer une nouvelle tournée avec ses arrêts initiaux.

/api/tournees/{id} PUT/PATCH Modifier les détails d'une tournée existante (date, statut, etc.).

/api/tournees/{id} DELETE Supprimer une tournée.

/api/tournees/{id}/stop

s

POST Ajouter un arrêt à une tournée spécifique.

Les routes d'API sont versionnées pour garantir la compatibilité future.

9



Robustesse : Validation des Données et Gestion des Erreurs

La fiabilité du système passe par une vérification rigoureuse des données entrantes et une gestion claire des erreurs pour le client.

Validation Côté Serveur

Toutes les données (ex: coordonnées 

géographiques, format de date) sont validées 

par l'API avant l'écriture en base. Utilisation 

de schémas Joi.

Codes de Statut HTTP

En cas d'échec, l'API retourne des codes 

HTTP standard (ex: 400 Bad Request, 404 

Not Found, 500 Internal Server Error) 

pour une interprétation facile.

Feedback Utilisateur

Les messages d'erreur sont concis et 

traduits, permettant à l'utilisateur de corriger 

rapidement ses actions.

1

0



Sécurité et Conformité

CORS 

configuré Secrets dans 

.env

Logs d’accès et 

erreurs

Mention future : authentification 

JWT / session

Compte MySQL applicatif à 

privilèges réduits

11



Solution d’hébergement

Deux options principales ont été étudiées :

Critère Scaleway (France) OVHcloud (France)

Localisation Paris / Amsterdam Roubaix / Gravelines

Type d’offre
Instances cloud (VPS ou 

“Scaleway Elements”)

VPS Cloud / Public 

Cloud

Compatibilité
Docker, Docker Compose 

natif

Compatible Docker via 

SSH

Sauvegardes
Snapshots et volumes 

persistants
Backups automatiques

RGPD
Conforme (hébergement 

UE)

Conforme (hébergement 

UE)

Avantage principal Simplicité et prix bas
Fiabilité et support 

reconnu

12



Solution d’hébergement
Après comparaison de 2 solutions cloud européennes 

(Scaleway, OVHcloud), l’équipe a retenu OVHcloud pour 

l’hébergement de l’application web.

Raisons du choix :

•Fiabilité reconnue : OVHcloud est un acteur français historique, utilisé dans de nombreux environnements professionnels.

•Hébergement 100 % en France : garantit la conformité RGPD et la souveraineté des données.

•Compatibilité Docker complète : permet de déployer notre stack

•Stockage persistant et sauvegardes automatiques : idéal pour sécuriser la base MySQL.

•Rapport qualité/prix : offre VPS abordable (≈ 5 €/mois) parfaitement adaptée à un projet académique et évolutif.

13



Solution de tests
Garantir la fiabilité, la stabilité et la cohérence des 

données de l’application à chaque itération de 

développement.

Type de test Objectif Outils / Méthodes

Tests unitaires

Vérifier le bon 

fonctionnement des 

routes API (GET, POST, 

PUT, DELETE).

Jest + Supertest 

(Node.js)

Tests d’intégration

Contrôler la 

communication entre 

Express, MySQL et le 

front.

Docker Compose en 

environnement de test

Tests manuels / 

exploratoires

Vérifier le rendu 

visuel, les 

interactions carte / 

calendrier.

Navigateur + console 

développeur

Validation continue

Lancer automatiquement 

les tests à chaque GitLab CI/CD pipeline
14



Présentation de l’équipe
Nous sommes une équipe de 2 développeurs juniors 

(étudiants) full-stack, un binôme polyvalent.

Rôle Nom

Matteo Herry

Développement full-stack : 

conception de l’API (Node.js 

/ Express), intégration du 

front (Bootstrap / Leaflet / 

FullCalendar), gestion Docker 

et base MySQL.

Elwyn Herry

Développement full-stack : 

création des interfaces, 

gestion des routes API, 

modélisation des données, 

intégration des solutions 

Carte / Itinéraire / 

Calendrier.
15



Déploiement et Configuration 
d'Environnement (.env)

Le déploiement est simplifié grâce à Docker Compose, et la configuration utilise des 

variables d'environnement.

Déploiement via Docker Compose

Un seul fichier docker-compose.yml

permet de démarrer l'ensemble des 

quatre conteneurs, assurant une 

installation cohérente.

Variables d'Environnement (.env)

Les informations sensibles (mots de 

passe, clés API, ports) sont stockées 

dans un fichier .env et ne sont jamais 

codées en dur.

Séparation des Environnements

Configuration séparée pour les 

environnements de développement, 

test et production (ex: 

NODE_ENV=production).

1

6


