
SAE5: Développement
avancé

Merimi Ayat & Mehiaoui Mohamed

Proposition technique

BUT Informatique année 3

Année 2025/2026

👥 L’équipe de développement
Développeuse Frontend : Merimi Ayat
Contribution : Création des interfaces utilisateur, intégration des cartes
interactives, gestion des vues et des formulaires.

Développeur Backend : Mehiaoui Mohamed
Contribution : Conception de l’API, gestion de la base de données,
sécurisation des routes, déploiement via Docker.

Ensemble, nous couvrons l’intégralité du cycle de
développement : du backend sécurisé à l’interface utilisateur
interactive, pour offrir une application SaaS fonctionnelle et
intuitive pour Jardin de Cocagne.

Le backend

La base de données
Faite avec :

Pourquoi ?
Stable et fiable

Supporte des types de
données variés : JSON, XML,
UUID, ARRAY
Permet d’ajouter des extensions
comme PostGIS pour la gestion
de données géographiques

Fonctionne sur tous les principaux OS : Linux,
Windows, macOS et compatible avec la
plupart des langages de programmation
(PHP, Python, Java, Node.js…).

Le serveur backend
Le serveur backend gère toute la logique métier de l’application :
 il centralise les données, assure leur sécurité, et fournit une
interface de communication entre la base de données et le front-
end via une API GraphQL.

Node.js repose sur le moteur V8 de Chrome et adopte un modèle asynchrone et non-
bloquant, idéal pour gérer un grand nombre de requêtes simultanées.
Il sert de base à de nombreux frameworks (comme Express) et permet de construire
des serveurs performants.

Node JS
Le cœur logique de l’application. Il gère les données, la sécurité et les échanges entre
le front-end et la base de données.

Pour créer un server clair et simple, avec express.js, node js est parfait : rapide, facilité
de prise en main, et possède un écosystème riche (npm, nodemon,path)

Express JS
Permet de créer facilement un serveur HTTP pour gérer les routes, les requêtes et la logique métier.

Express repose sur Node.js et simplifie la création d’un serveur web.
Il permet d’ajouter des middlewares (authentification, logs, CORS, etc.) et de gérer
des routes vers les endpoints de ton API.
Il est souvent utilisé comme base pour GraphQL ou REST API.

Comme j’utilise nodejs, alors il fallait pour bien comprendre la création de route api, un
framework simple d’utilisation. J’ai donc opté pour express js .

GraphQL permet au client de demander exactement les données nécessaires, ni plus ni
moins.
Il centralise toutes les ressources dans une seule requête.
Avec nodeJS il s’intègre parfaitement à Express pour exposer des queries, mutations et
types définis dans le schéma

Graphql
Un langage de requête pour interagir avec les données du serveur, plus flexible et précis que REST

J’ai opté pour GraphQL, car c’est un type d’API très utilisé dans le monde
professionnel.
De plus, il permet de sélectionner précisément les données à renvoyer, ce qui le rend
plus sécurisé et efficace que les API REST.
Grâce à un seul point d’entrée et des schémas définis, il assure un échange clair et
structuré des données.

Leaft.js
Leaflet permet de créer des cartes
interactives, d’ajouter des marqueurs, des
popups, et de gérer des événements
utilisateur comme les clics ou les
déplacements.
Elle fonctionne parfaitement avec Node.js
côté frontend pour afficher des cartes
dynamiques et réactives.

🌍Open-source et légère (pas lourde
comme Google Maps)
⚡Rapide et performante pour des cartes
interactives
 Simple à intégrer avec HTML, CSS et JS
📌Supporte les marqueurs, popups et
couches personnalisées
🔄Compatible avec tous les navigateurs
modernes

Le Frontend

Contrairement au serveur backend (qui gère les données et l’API),
ce serveur Express côté frontend s’occupe de :

Distribuer les pages HTML au navigateur
Contrôler l’accès à certaines routes selon la session utilisateur
Gérer la sécurité (sessions, cookies, HTTPS, redirections)

Un server côté frontend !
Ce serveur gère la partie visible du site : il distribue les pages web, tout en contrôlant l’accès selon
l’authentification et le rôle de l’utilisateur.

Le Front-End s’appuie sur une architecture modulaire :
Chaque composant visuel (formulaire, tableau, carte,
navigation, etc.) est isolé dans une structure propre (SCSS +
HTML).
Les éléments réutilisables sont factorisés afin de réduire la
redondance du code.
Les fichiers SCSS sont organisés par modules et importés dans
une feuille principale

Architecture Front-End
Assurer la conception et le développement de l’interface utilisateur de l’application du réseau
Cocagne, en garantissant une expérience fluide, responsive et conforme aux standards de qualité
ergonomique et logicielle.

Permet de mieux structurer et organiser les feuilles de style en
les découpant par composants ou par pages.
Facilite la maintenance et l’évolution du design dans le temps.
Offre des fonctionnalités avancées (variables, mixins,
nesting…) pour une meilleure productivité.

SCSS
Organisation du code SCSS

scss/
base/ → variables, couleurs, typographies
components/ → styles des boutons, formulaires, cartes, menus
layout/ → grid, header, footer, responsive
pages/ → pages spécifiques (dashboard, profil, accueil…)
main.scss → fichier principal compilé en CSS

Cette organisation suit une logique modulaire pour permettre aux membres de l’équipe de
travailler en parallèle sur différents éléments de l’interface.

Utilisation du système de grille Bootstrap pour adapter le design à toutes les
résolutions.
Composants testés sur mobile, tablette et desktop.
Respect des bonnes pratiques d’accessibilité (contraste, tailles, alternatives textuelles).

 Responsivité et accessibilité

Déploiement

Docker
Docker encapsule chaque partie de l’application (frontend et backend) dans un conteneur
indépendant.
Chaque conteneur a son environnement propre, ses dépendances, et peut tourner de
manière identique en développement et en production.
 Cela permet de :

Déployer le projet sur n’importe quelle machine ou serveur
Éviter les conflits entre versions de Node.js, packages, ou bases de données
Avoir des environnements reproductibles et stables

💡 Pourquoi Docker pour ce projet :
1.✅ Technologie connue → Nous maîtrisons déjà Docker, ce qui facilite le déploiement.
2.✅ Isolation des environnements → frontend et backend tournent séparément, sans

interférer l’un avec l’autre.
3.✅ Portabilité → le projet fonctionne exactement pareil sur ton PC, sur un serveur cloud, ou

sur une VM.

Hébergement

Render
Frontend, backend et base de données dans des conteneurs isolés, pour un
déploiement simple, sécurisé et reproductible.

Render permet de déployer tous les composants Docker de ton projet :
Frontend Node.js + Express
Backend Node.js + Express + GraphQL
Base de données PostgreSQL
 Chaque composant est isolé dans un conteneur indépendant, communique via des
ports configurés, et fonctionne de manière identique en dev et en prod.

