Merimi Ayat & Mehiaoui Mohamed BUT Informatique annee 3

SAES5: Developpement
avance

Proposition technique

@ R e HlfT Saint-Dié Année 2025/2026

¢ L'equipe de developpement

Développeuse Frontend : Merimi Ayat
Contribution : Création des interfaces utilisateur, intégration des cartes

interactives, gestion des vues et des formulaires.

Développeur Backend : Mehiaoui Mohamed
Contribution : Conception de I'API, gestion de la base de données,
sécurisation des routes, déeploiement via Docker.

Ensemble, nous couvrons l'integralité du cycle de
developpement : du backend securisé a l'interface utilisateur
interactive, pour offrir une application SaaS fonctionnelle et
intuitive pour Jardin de Cocagne.

index. rom /home/antonio/.loca antonio/work/g
a-commons.rh from /home/antonio/,loca onio/work/gi

i dia/lib/ are.rb
n /
p—Y from /home/antonic/.local antonio/work/gits/
n /
n !

r
rcadia/laib/ ore,rb
rcadia/lib/s ore.rb
rcadiaslib/a-core.rb
rcadia/lib/a-core.rb
arcadia/bin/arcadia:
rcadia/bin/arcadia: 19

ae-editor.conf :10H ig:me:a: -n;o:.lo:ai -nl.iwor::-:
arcadia.gemspec om onio/.loca onio/wor

A T from /home/antonio/.local antonio/work/gits/
5 3 from /home/antonio/.local antonio/work/gits/

ae-term.conf

READWE

End running /home/antonio/.local antonio/work/gits/arcadia/bin/arcadia:
test-shutdown-after-startup.conf -

‘Batch Calibration.exe' (Win32
‘Batch Calibration.exe®' (Win32
‘Batch Calibration.exe' (Win32
‘Batch Calibration.exe' (Win32
‘Batch Calibration.exe' (Win32
Application "\ 22\C:\WINDOWS\s

The program *[7676] Batch Cali

A e e R

‘A layer

Var Bove_pumber

soundilanager .onload = function(){

]

function init(gam_id. player){
gumd.-ugu.&hq’dl = false;

window. sctTimcout("onTimer(" -gom_id« " " +pl

}

function initBoard|gem_id. num_moves, player,

for (J=0.j<i;
var plece = ${ 'plece -1+
if {color=='h &4 pi

- (
var plece_id = piece.id.substr(piece.

e_id = square.id.substr(s
new Ajax 51("move.php*

...-..-.E"'-“FM;'“”‘FE"' “plece_id

i

fni-!':alr.?(
Sonsov
A
Inilialize
alavym
25y
Defi1re

variableg

La base de donneées
Falte avec : PostgreSQl_ -

Pourquoi ? (LM< T { {
e Stable et fiable I
e Supporte des types de
données variés : JSON, XML,
UUID, ARRAY
e Permet d'ajouter des extensions

comme PostGIS pour la gestion
de donneées geographiques

- saL.
e Fonctionne sur tous les principaux OS : Linux, E = E T
Windows, macOS et compatible avec la

plupart des langages de programmation
(PHP, Python, Java, Node.js...).

Le serveur backend

Le serveur backend gere toute la logique métier de I'application :
il centralise les donnees, assure leur securité, et fournit une

interface de communication entre la base de donnees et le front-
end via une API GraphQL.

n de

—XOIeSS

JS

@ GraphQL

Node }S

Le coeur logique de I'application. Il gere les données, la sécurité et les échanges entre
le front-end et la base de données.

Node.js repose sur le moteur V8 de Chrome et adopte un modele asynchrone et non-
oloquant, idéal pour gerer un grand nombre de requétes simultanées.

| sert de base a de nombreux frameworks (comme Express) et permet de construire
des serveurs performants.

Pour creer un server clair et simple, avec express.js, node js est parfait : rapide, facilite
de prise en main, et possede un écosysteme riche (npm, nodemon,path)

n de

Express JS

Permet de créer facilement un serveur HTTP pour gérer les routes, les requétes et la logique métier.

Express repose sur Node.js et simplifie la creation d'un serveur web.
Il permet d'ajouter des middlewares (authentification, logs, CORS, etc.) et de gérer

des routes vers les endpoints de ton API.
Il est souvent utilise comme base pour GraphQL ou REST API.

Comme j'utilise nodejs, alors il fallait pour bien comprendre la création de route api, un
framework simple d'utilisation. J'ai donc opté pour express js .

Oress JS

Graphql

Un langage de requéte pour interagir avec les données du serveur, plus flexible et précis que REST

GraphQL permet au client de demander exactement les données nécessaires, ni plus ni

moins.

Il centralise toutes les ressources dans une seu
Avec node)S il s'integre parfaitement a Express
types définis dans le schéma

orofessionnel.

De plus, il permet de sélectionner précisément
nlus sécurisé et efficace que les APl REST.

e requéte.
oour exposer des queries, mutations et

J'ai opté pour GraphQL, car c'est un type d’API tres utilisé dans le monde

les données a renvoyer, ce qui le rend

Grace a un seul point d'entrée et des schémas définis, il assure un echange clair et

@ GraphQL

structuré des données.

Leaft.|s

Leaflet permet de créer des cartes
interactives, d’'ajouter des marqueurs, des
popups, et:de gérer des evenements
utilisateur comme les clics ou les
déplacements.

Elle fonctionne parfaitement avec Node.js * ~ *
cote frontend pour-afficher des cartes
dynamiques et réactives.

PACIFI(
OCEAN

% 0Open-source-et légere (pas lourde
comme Google Maps)
Rapide et performante pour'des cartes

interactives

Simple a integrer avec HTML, CSS et JS
®Supporte les marqueurs, popups et
couches personnalisées
®jCompatible avec tous-les navigateurs
modernes

ntInfa anfo -xnt_. daCor

sndle the rasylts

> au'.

.e(J againgt revision; 13061
"nl- " -

Pluginsr fise/g
e Wl T
L /D1ans S .

e ———

return fun,

L0N

- UC

i
>, 51

Un server cote frontend !

Ce serveur gere la partie visible du site : il distribue les pages web, tout en controlant I'acces selon
I'authentification et le role de l'utilisateur.

Contrairement au serveur backend (qui gere les donnees et I'API),
ce serveur Express coté frontend s'occupe de :

e Distribuer les pages HTML au navigateur
e Controler I'acces a certaines routes selon la session utilisateur
o Geérer la sécurité (sessions, cookies, HTTPS, redirections)

n de

poress JS

Architecture Front-End

Assurer la conception et le développement de I'interface utilisateur de I'application du réseau

Cocagne, en garantissant une expérience fluide, responsive et conforme aux standards de qualité
ergonomique et logicielle.

Le Front-End s'appuie sur une architecture modulaire :

e Chaque composant visuel (formulaire, tableau, carte,
navigation, etc.) est isole dans une structure propre (SCSS +
HTML).

e | es eléements réutilisables sont factorisés afin de réduire la
redondance du code.

e | es fichiers SCSS sont organisés par modules et importés dans
une feuille principale

HTML

SCSS

Organisation du code SCSS
* scss/
o base/ — variables, couleurs, typographies
o components/ — styles des boutons, formulaires, cartes, menus
o layout/ — grid, header, footer, responsive
o pages/ — pages spécifiques (dashboard, profil, accuelil...)
o main.scss — fichier principal compilé en CSS
Cette organisation suit une logique modulaire pour permettre aux membres de I'équipe de
travailler en parallele sur différents éléments de I'interface.

e Permet de mieux structurer et organiser les feuilles de style en

es découpant par composants ou par pages.

e Facilite la maintenance et I'évolution du design dans le temps.

e Offre des fonctionnalités avancées (variables, mixins,
nesting...) pour une meilleure productivite.

Responsivite et accessibilité

e Utilisation du systeme de grille Bootstrap pour adapter le design a toutes les
résolutions.

e Composants testés sur mobile, tablette et desktop.

e Respect des bonnes pratiques d'accessibilité (contraste, tailles, alternatives textuelles).

BOOTSTRAP

Déploiement

Docker

Docker encapsule chaque partie de I'application (frontend et backend) dans un conteneur
indépendant.
Chaque conteneur a son environnement propre, ses dépendances, et peut tourner de
maniere identique en développement et en production.
Cela permet de:

e Déployer le projet sur n‘importe quelle machine ou serveur

e Eviter les conflits entre versions de Node.js, packages, ou bases de données

 Avoir des environnements reproductibles et stables

Pourquoi Docker pour ce projet:
1.824 Technologie connue — Nous maitrisons déja Docker, ce qui facilite le déploiement.
2.4 Isolation des environnements — frontend et backend tournent séparément, sans
interférer I'un avec lI'autre.
3.0L4 Portabilité — le projet fonctionne exactement pareil sur ton PC, sur un serveur cloud, ou
sur une VM.

Hébergement

Render

Frontend, backend et base de données dans des conteneurs isolés, pour un
déploiement simple, sécurisé et reproductible.

Render permet de déployer tous les composants Docker de ton projet :
e Frontend Node.js + Express
e Backend Node.js + Express + GraphQL
e Base de données PostgreSQL
e Chaque composant est isolé dans un conteneur indépendant, communique via des
ports configureés, et fonctionne de maniere identique en dev et en prod.

